Skip to main content
Log in

Software-Defined and Virtualized Future Mobile and Wireless Networks: A Survey

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

With the proliferation of mobile demands and increasingly multifarious services and applications, mobile Internet has been an irreversible trend. Unfortunately, the current mobile and wireless network (MWN) faces a series of pressing challenges caused by the inherent design. In this paper, we extend two latest and promising innovations of Internet, software-defined networking and network virtualization, to mobile and wireless scenarios. We first describe the challenges and expectations of MWN, and analyze the opportunities provided by the software-defined wireless network (SDWN) and wireless network virtualization (WNV). Then, this paper focuses on SDWN and WNV by presenting the main ideas, advantages, ongoing researches and key technologies, and open issues respectively. Moreover, we interpret that these two technologies highly complement each other, and further investigate efficient joint design between them. This paper confirms that SDWN and WNV may efficiently address the crucial challenges of MWN and significantly benefit the future mobile and wireless network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cover TM, Thomas JA (2006) Elements of information theory. 2nd Edn, (Wiley series in telecommunications and signal processing). Wiley, New Jersey

    Google Scholar 

  2. Kleinrock L (2010) An early history of the internet [history of communications]. IEEE Commun Mag 48(8):26–36

    Article  Google Scholar 

  3. Leiner BM, Cerf VG, Clark DD, Kahn RE, Kleinrock L, Lynch DC, Postel J, Roberts LG, Wolff S (2009) A brief history of the internet. SIGCOMM Comput Commun Rev 39(5):22–31

    Article  Google Scholar 

  4. Karjaluoto H (2007) An investigation of third generation (3g) mobile technologies and services. Contemp Manag Res 2(2):91–104

    Google Scholar 

  5. Kennedy M, Ksentini A, Hadjadj-Aoul Y, Muntean G (2013) Adaptive energy optimization in multimedia-centric wireless devices: a survey. IEEE Commun Surv Tutor 15(2):768–786

    Article  Google Scholar 

  6. Yucek T, Arslan H (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutor 11(1):116–130

    Article  Google Scholar 

  7. Ferrus R, Sallent O, Agusti R (2010) Interworking in heterogeneous wireless networks: comprehensive framework and future trends. IEEE Wirel Commun 17(2):22–31

    Article  Google Scholar 

  8. Stankiewicz R, Jajszczyk A (2011) A survey of qoe assurance in converged networks. Comput Netw 55(7):1459–1473

    Article  Google Scholar 

  9. Marsch P, Raaf B, Szufarska A, Mogensen P, Guan H, Farber M, Redana S, Pedersen K, Kolding T (2012) Future mobile communication networks: challenges in the design and operation. IEEE Veh Technol Mag 7 (1):16–23

    Article  Google Scholar 

  10. Fehske A, Fettweis G, Malmodin J, Biczok G (2011) The global footprint of mobile communications: the ecological and economic perspective. IEEE Commun Mag 49(8):55–62

    Article  Google Scholar 

  11. Rexford J, Dovrolis C (2010) Future internet architecture: clean-slate versus evolutionary research. ACM Commun 53(9):36–40

    Article  Google Scholar 

  12. Yu M, Rexford J, Freedman MJ, Wang J (2010) Scalable flow-based networking with difane. SIGCOMM Comput Commun Rev 41(4):351–362

    Article  Google Scholar 

  13. Kim H, Feamster N (2013) Improving network management with software defined networking. IEEE Commun Mag 51(2):114– 119

    Article  Google Scholar 

  14. Astuto BN, Mendon M, Nguyen XN, Obraczka K, Turletti T (2014) A Survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun Surv Tutor 16(3):1617–1634

  15. Lara A, Kolasani A, Ramamurthy B (2013) Network innovation using openflow: a survey. IEEE Commun Surv Tutor 99:1–20

    Google Scholar 

  16. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) Openflow: enabling innovation in campus networks. SIGCOMM Comput Commun Rev 38(2):69–74

    Article  Google Scholar 

  17. Chowdhury NMK, Boutaba R (2010) A survey of network virtualization. Comput Netw 54(5):862–876

    Article  MATH  Google Scholar 

  18. Feamster N, Gao L, Rexford J (2007) How to lease the internet in your spare time. SIGCOMM Comput Commun Rev 37(1):61–64

    Article  Google Scholar 

  19. Chowdhury N, Boutaba R (2009) Network virtualization: state of the art and research challenges. IEEE Commun Mag 47(7):20–26

    Article  Google Scholar 

  20. ETSI (2012) Network functions virtualisation white paper. http://portal.etsi.org/NFV/NFV_White_Paper.pdf Accessed October 2012

  21. Jain R (2013) Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun Mag 51(11):24–31

    Article  Google Scholar 

  22. Ericsson (2012) Mobile report on the pulse of the networked society. Ericsson Mobility Report. http://www.ericsson.com/res/docs/2012/ericsson-mobility-report-november-2012.pdf Accessed November 2012

  23. Banerjee A, Chen X, Erman J, Gopalakrishnan V, Lee S, Merwe J (2013) Moca: A lightweight mobile cloud offloading architecture. In: Proceedings of the 8th ACM international workshop on mobility in the evolving internet architecture, ser. MobiArch ’13, New York, pp 11–16

  24. Chen BX (2012) Carriers warn of crisis in mobile spectrum. The New York Times. http://www.nytimes.com/2012/04/18/technology/mobile-carriers-warn-of-spectrum-crisis-others-see-hyperbole.html?pagewanted=all Accessed April 2012

  25. Research R (2010) Mobile broadband capacity constraints and the need for optimization. http://www.rysavy.com/Articles/2010_02_Rysavy_Mobile_Broadband_Capacity_Constraints.pdf Accessed February 2010

  26. Open network foundation (onf) (2013) https://www.opennetworking.org/ https://www.opennetworking.org/ Accessed December 2013

  27. Open networking research center (onrc) (2012) http://onrc.net/. Accessed December 2013

  28. Openflow whitepaper and specification (2009) http://archive.openflow.org/wp/documents/ Accessed July 2013

  29. Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N, Shenker S (2008) Nox: towards an operating system for networks. SIGCOMM Comput Commun Rev 38(3):105–110

    Article  Google Scholar 

  30. Floodlight project (2013) http://www.projectfloodlight.org/. Accessed December 2013

  31. Jain S, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, Venkata S, Wanderer J, Zhou J, Zhu M, Zolla J, Hölzle U, Stuart S, Vahdat A (2013) B4: experience with a globally-deployed software defined wan. SIGCOMM Comput Commun Rev 43(4):3–14

    Google Scholar 

  32. Hong CY, Kandula S, Mahajan R, Zhang M, Gill V, Nanduri M, Wattenhofer R (2013) Achieving high utilization with software-driven wan. SIGCOMM Comput Commun Rev 43(4):15–26

    Google Scholar 

  33. Qazi Z A, Tu CC, Chiang L, Miao R, Sekar V, Yu M (2013) Simple-fying middlebox policy enforcement using sdn. SIGCOMM Comput Commun Rev 43(4):27–38

    Google Scholar 

  34. Fayazbakhsh SK, Sekar V, Yu M, Mogul JC (2013) Flowtags: enforcing network-wide policies in the presence of dynamic middlebox actions. In: Proceedings of the 2nd ACM SIGCOMM workshop on hot topics in software defined networking, ser. HotSDN ’13, New York, pp 19–24

  35. Azodolmolky S, Nejabati R, Escalona E, Jayakumar R, Efstathiou N, Simeonidou D (2011) Integrated openflow-gmpls control plane: an overlay model for software defined packet over optical networks. In: 37th European conference and exposition on optical communications, optical society of America

  36. Gringeri S, Bitar N, Xia T (2013) Extending software defined network principles to include optical transport. IEEE Commun Mag 51(3):32–40

    Article  Google Scholar 

  37. Collings B (2013) New devices enabling software-defined optical networks. IEEE Commun Mag 51(3):66–71

    Article  Google Scholar 

  38. Yap KK, Kobayashi M, Sherwood R, Huang TY, Chan M, Handigol N, McKeown N (2010) Openroads: empowering research in mobile networks. SIGCOMM Comput Commun Rev 40(1):125–126

    Article  Google Scholar 

  39. Suresh L, Schulz-Zander J, Merz R, Feldmann A Vazao T (2012) Towards programmable enterprise wlans with odin. In: Proceedings of the 1st workshop on hot topics in software defined networks, ser. HotSDN ’12, New York, pp 115–120

  40. Bansal M, Mehlman J, Katti S, Levis P (2012) Openradio: a programmable wireless dataplane. In: Proceedings of the 1st workshop on Hot topics in software defined networks, ser. HotSDN ’12, New York, pp 109–114

  41. Kumar S, Cifuentes D, Gollakota S, Katabi D (2013) Bringing cross-layer mimo to today’s wireless lans. SIGCOMM Comput Commun Rev 43(4):387–398

    Google Scholar 

  42. Gudipati A, Perry D, Li L E, Katti S (2013) Softran: software defined radio access network. In: Proceedings of the 2nd ACM SIGCOMM workshop on Hot topics in software defined networking, ser. HotSDN ’13, New York, pp 25–30

  43. Yang M, Li Y, Jin D, Su L, Ma S, Zeng L (2013) Openran: a software-defined ran architecture via virtualization. SIGCOMM Comput Commun Rev 43(4):549–550

    Google Scholar 

  44. Li l, Mao Z, Rexford J (2012) Toward software-defined cellular networks. In: 2012 European workshop on software defined networking (EWSDN), Berlin, pp 7–12

  45. Jin X, Li L E, Vanbever L, Rexford J (2013) Softcell: Scalable and flexible cellular core network architecture. In: Proceedings of the 9th ACM conference on emerging networking experiments and technologies, ser. CoNEXT ’13, New York, pp 163–174

  46. Pentikousis K, Wang Y, Hu W (2013) Mobileflow: toward software-defined mobile networks. IEEE Commun Mag 51(7):44–53

    Article  Google Scholar 

  47. Huawei Technologies Co Ltd. (2013) Softcom: reshaping the future of network architecture http://www.huawei.com/ilink/en/solutions/broader-smarter/morematerial-b/HW_204206 Accessed December 2012

  48. Yap KK, Sherwood R, Kobayashi M, Huang TY, Chan M, Handigol N, McKeown N, Parulkar G (2010) Blueprint for introducing innovation into wireless mobile networks. In: Proceedings of the 2nd ACM SIGCOMM workshop on virtualized infrastructure systems and architectures, ser. VISA ’10. USA, New York, pp 25–32

  49. Yap KK, Kobayashi M, Underhill D, Seetharaman S, Kazemian P, McKeown N (2009) The stanford openroads deployment. In: Proceedings of the 4th ACM international workshop on experimental evaluation and characterization, ser. WINTECH ’09, New York, pp 59–66

  50. Sherwood R, Chan M, Covington A, Gibb G, Flajslik M, Handigol N, Huang T Y, Kazemian P, Kobayashi M, Naous J, Seetharaman S, Underhill D, Yabe T, Yap K K, Yiakoumis Y, Zeng H, Appenzeller G, Johari R, McKeown N, Parulkar G (2010) Carving research slices out of your production networks with openflow. SIGCOMM Comput Commun Rev 40(1):129–130

    Article  Google Scholar 

  51. Sherwood R, Gibb G, Yap KK, Appenzellery G, Casado M, McKeown N, Parulkar G (2009) Flowvisor: a network virtualization layer. OpenFlow switch consortium. Tech Rep:1–14

  52. China Mobile Institute (2011) C-ran: the road towards green ran white paper. China Mobile Research Institute. Tech Rep:144

  53. Huawei Technologies Co. Ltd. (2013). In: Hot topics: softcom in mobile world congress 2013, ser MWC ’13, Barcelona. http://www.huawei.com/minisite/mwc2013/en/hottopics/softcom.html

  54. Costanzo S, Galluccio L, Morabito G, Palazzo S (2012) Software defined wireless networks: unbridling sdns. In: 2012 european workshop on software defined networking (EWSDN), Berlin, pp 1–6

  55. Dely P, Kassler A, Bayer N (2011) Openflow for wireless mesh networks. In: Proceedings of 20th international conference on computer communications and networks (ICCCN), Hawaii, pp 1–6

  56. Yeganeh S, Tootoonchian A, Ganjali Y (2013) On scalability of software-defined networking. IEEE Commun Mag 51(2):136– 141

    Article  Google Scholar 

  57. Drutskoy D, Keller E, Rexford J (2013) Scalable network virtualization in software-defined networks. IEEE Internet Comput 17(2):20–27

    Article  Google Scholar 

  58. Bari M, Boutaba R, Esteves R, Granville L, Podlesny M, Rabbani M, Zhang Q, Zhani M (2013) Data center network virtualization: a survey. IEEE Commun Surv Tutor 15 (2):909–928

    Article  Google Scholar 

  59. Guo C, Lu G, Wang HJ, Yang S, Kong C, Sun P, Wu W, Zhang Y (2010) Secondnet: a data center network virtualization architecture with bandwidth guarantees. In: Proceedings of the 6th international conference, ser. Co-NEXT ’10, New York, pp 15:1–15:12

  60. Azodolmolky S, Wieder P, Yahyapour R (2013) Cloud computing networking: challenges and opportunities for innovations. IEEE Commun Mag 51(7):54–62

    Article  Google Scholar 

  61. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. ACM Commun 53(4):50–58

    Article  Google Scholar 

  62. Geni: global environment for network innovations (2013) http://www.geni.net/ Accessed December 2013

  63. Planetlab project (2013) http://www.planet-lab.org/. Accessed December 2013

  64. Fire: future internet research and experimentation (2013) http://cordis.europa.eu/fp7/ict/fire/ Accessed December 2013

  65. Zhou Y, Li Y, Su L, JIN D, Lieguang Z (2012) Research of network innovation experimental environment based on network virtualization. Acta Electron Sinica 40(11):2152–2157

    Google Scholar 

  66. Orbit: open-access research testbed for next-generation wireless networks (2013) http://www.orbit-lab.org/ Accessed December 2013

  67. Smith G, Chaturvedi A, Mishra A, Banerjee S (2007) Wireless virtualization on commodity 802.11 hardware. In: Proceedings of the 2nd ACM international workshop on wireless network testbeds, experimental evaluation and characterization, ser. WinTECH ’07, New York, pp 75–82

  68. Bhanage G, Vete D, Seskar I, Raychaudhuri D (2010) Splitap: leveraging wireless network virtualization for flexible sharing of wlans. In: Global telecommunications conference (GLOBECOM 2010), Miami, pp 1–6

  69. Xia L, Kumar S, Yang X, Gopalakrishnan P, Liu Y, Schoenberg S, Guo X (2011) Virtual wifi: bring virtualization from wired to wireless. SIGPLAN Not 46(7):181–192

    Article  Google Scholar 

  70. He Y, Fang J, Zhang J, Shen H, Tan K, Zhang Y (2010) Mpap: virtualization architecture for heterogenous wireless aps. SIGCOMM Comput Commun Rev 41(4):1–2

    Google Scholar 

  71. Aljabari G, Eren E (2011) Virtualization of wireless lan infrastructures. In: 2011 IEEE 6th international conference on intelligent data acquisition and advanced computing systems (IDAACS), Berlin, pp 837–841

  72. Matos R, Sargento S, Hummel K, Hess A, Tutschku K, Meer H (2012) Context-based wireless mesh networks: a case for network virtualization. Telecommun Syst 51(4):259–272

    Article  Google Scholar 

  73. Kokku R, Mahindra R, Zhang H, Rangarajan S (2010) Nvs: a virtualization substrate for wimax networks. In: Proceedings of the 16th annual international conference on Mobile computing and networking, ser. MobiCom ’10, New York, pp 233– 244

  74. Costa-Perez X, Swetina J, Guo T, Mahindra R, Rangarajan S (2013) Radio access network virtualization for future mobile carrier networks. IEEE Commun Mag 51(7):27–35

    Article  Google Scholar 

  75. Bhanage G, Seskar I, Mahindra R, Raychaudhuri D (2010) Virtual basestation: Architecture for an open shared wimax framework. In: Proceedings of the 2nd ACM SIGCOMM workshop on virtualized infrastructure systems and architectures, ser. VISA ’10, New York, pp 1–8

  76. Zaki Y, Zhao L, Goerg C, Timm-Giel A (2011) Lte mobile network virtualization. Mob Netw Appl 16 (4):424–432

    Article  Google Scholar 

  77. Zaki Y, Zhao L, Goerg C, Timm-Giel A (2010) Lte wireless virtualization and spectrum management. In: 3rd joint IFIP wireless and mobile networking conference (WMNC). Budapest, Hungary, pp 1–6

  78. Hoffmann M, Staufer M (2011) Network virtualization for future mobile networks: general architecture and applications. In: 2011 IEEE international conference on communications workshops (ICC). Kyoto, Japan, pp 1–5

  79. Fu F, Kozat U (2010) Wireless network virtualization as a sequential auction game. In: Proceedings of IEEE INFOCOM 2010, vol 1, San Diego, p 9

  80. Park K M, Kim C K (2009) A framework for virtual network embedding in wireless networks. In: Proceedings of the 4th international conference on future internet technologies, ser. CFI ’09, New York, pp 5–7

  81. Yun D, Yi Y (2011) Virtual network embedding in wireless multihop networks. In: Proceedings of the 6th international conference on future internet technologies, ser. CFI ’11, New York, pp 30–33

  82. Yang M, Li Y, Zeng L, Jin D, Su L (2012) Karnaugh-map like online embedding algorithm of wireless virtualization. In: Proceedings of the 15th international symposium on wireless personal multimedia communications, ser. IEEE WPMC ’12. Taipei, Taiwan, pp 594–598

  83. Yang M, Li Y, Jin D, Yuan J, Su L, Zeng L (2013) Opportunistic spectrum sharing based resource allocation for wireless virtualization. In: 7th international conference on innovative mobile and internet services in ubiquitous computing (IMIS). Taichung, Taiwan, pp 51–58

  84. Banchs A, Serrano P, Patras P, Natkaniec M (2012) Providing throughput and fairness guarantees in virtualized wlans through control theory. Mob Netw Appl 17 (4):435–446

    Article  Google Scholar 

  85. Paul S, Seshan S (2006) Technical document on wireless virtualization. GENI: global environment for network innovations. Tech Rep:1–17

  86. Belbekkouche A, Hasan M M, Karmouch A (2012) Resource discovery and allocation in network virtualization. IEEE Commun Surv Tutor 14(4):1114–1128

    Article  Google Scholar 

  87. Philip V, Gourhant Y, Zeghlache D (2012) Openflow as an architecture for e-node b virtualization. e-Infrastructure and e-Services for developing countries. Springer, Berlin, pp 49–63

    Book  Google Scholar 

Download references

Acknowledgments

This paper presents a survey focusing on two latest and promising technologies: software-defined wireless network (SDWN) and wireless network virtualization (WNV). SDWN and WNV significantly benefit the convergence of heterogeneous wireless networks, improve the resource utilization, facilitate the network innovations from the network layer down to physical layer, provide customized services and guarantee the QoS and QoE, and increase the revenue of all the network entities. Meanwhile, SDWN and WNV are naturally compatible with the current networks and efficiently support the smoothly evolving. Finally, implementing and combining SDWN and WNV still have lots of open issues. This requires us to solve a series of challenges step by step for the future mobile and wireless network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Additional information

This work is supported by National Basic Research Program of China (973 Program Grant No. 2013CB329105), National Natural Science Foundation of China (Grants No. 61301080 and No. 61171065), Chinese National Major Scientific and Technological Specialized Project (No. 2013ZX03002001), Chinas Next Generation Internet (No. CNGI-12-03-007), and ZTE Corporation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, Y., Jin, D. et al. Software-Defined and Virtualized Future Mobile and Wireless Networks: A Survey. Mobile Netw Appl 20, 4–18 (2015). https://doi.org/10.1007/s11036-014-0533-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-014-0533-8

Keywords

Navigation