Parkinson’s UK, Facts and figures about Parkinson’s for journalists. https://www.parkinsons.org.uk/about-us/media-and-press-office. Accessed 16 Sep 2020.
Weintraub D, Comella CL, Horn S. Parkinson’s disease-part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care. 2008;14(2 Suppl):S40-8.
Google Scholar
Shahed J, Jankovic J. Motor symptoms in Parkinson’s disease. Handb Clin Neurol. 2007;83:329–42. https://doi.org/10.1016/S0072-9752(07)83013-2.
Article
Google Scholar
Pierleoni P, Palma L, Belli A, Pernini L. A real-time system to aid clinical classification and quantification of tremor in Parkinson’s disease. In: IEEE-EMBS International Conference on biomedical and health informatics (BHI), IEEE, 2014; p. 113–16. https://doi.org/10.1109/BHI.2014.6864317.
Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (mds-updrs): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70. https://doi.org/10.1002/mds.22340.
Article
Google Scholar
Bot BM, Suver C, Neto EC, Kellen M, Klein A, Bare C, Doerr M, Pratap A, Wilbanks J, Dorsey ER, et al. The mpower study, Parkinson disease mobile data collected using researchkit. Sci data. 2016;3(1):1–9. https://doi.org/10.1038/sdata.2016.11.
Article
Google Scholar
Ossig C, Antonini A, Buhmann C, Classen J, Csoti I, Falkenburger B, Schwarz M, Winkler J, Storch A. Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease. J Neural Transm. 2016;123(1):57–64. https://doi.org/10.1007/s00702-015-1439-8.
Article
Google Scholar
Silva de Lima AL, Hahn T, de Vries NM, Cohen E, Bataille L, Little MA, Baldus H, Bloem BR, Faber MJ. Large-scale wearable sensor deployment in Parkinson’s patients: the Parkinson@home study protocol. JMIR Res Protoc. 2016. https://doi.org/10.2196/resprot.5990.
Article
Google Scholar
Palmer JL, Coats MA, Roe CM, Hanko SM, Xiong C, Morris JC. Unified Parkinson’s disease rating scale-motor exam: inter-rater reliability of advanced practice nurse and neurologist assessments. J Adv Nurs. 2010;66(6):1382–7. https://doi.org/10.1111/j.1365-2648.2010.05313.x.
Article
Google Scholar
Post B, Merkus MP, de Bie RM, de Haan RJ, Speelman JD. Unified Parkinson’s disease rating scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? Mov Disord. 2005;20(12):1577–84. https://doi.org/10.1002/mds.20640.
Article
Google Scholar
Siderowf A, McDermott M, Kieburtz K, Blindauer K, Plumb S, Shoulson I, Group PS. Test-retest reliability of the unified Parkinson’s disease rating scale in patients with early Parkinson’s disease: results from a multicenter clinical trial. Mov Disord. 2002;17(4):758–63. https://doi.org/10.1002/mds.10011.
Article
Google Scholar
Fisher JM, Hammerla NY, Ploetz T, Andras P, Rochester L, Walker RW. Unsupervised home monitoring of Parkinson’s disease motor symptoms using body-worn accelerometers. Parkinsonism Relat Disord. 2016. https://doi.org/10.1016/J.PARKRELDIS.2016.09.009.
Article
Google Scholar
Belić M, Bobić V, Šolaja N, Đurić-Jovičić M, Kostić VS. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—a review. Clin Neurol Neurosurg. 2019. https://doi.org/10.1016/j.clineuro.2019.105442.
Article
Google Scholar
Ramyachitra D, Manikandan P. Imbalanced dataset classification and solutions: a review. Int J Comput Bus Res (IJCBR). 2014;5(4):1–29.
Google Scholar
López V, Fernández A, García S, Palade V, Herrera F. An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci. 2013;250:113–41. https://doi.org/10.1016/j.ins.2013.07.007.
Article
Google Scholar
Kaur H, Pannu HS, Malhi AK. A systematic review on imbalanced data challenges in machine learning: applications and solutions. ACM Comput Surveys (CSUR). 2019;52(4):1–36. https://doi.org/10.1145/3343440.
Article
Google Scholar
Sun Y, Wong AK, Kamel MS. Classification of imbalanced data: a review. Int J Pattern Recognit Artif Intell. 2009;23(04):687–719. https://doi.org/10.1142/S0218001409007326.
Article
Google Scholar
Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G. Learning from class-imbalanced data: review of methods and applications. Expert Syst Appl. 2017;73:220–39. https://doi.org/10.1016/j.eswa.2016.12.035.
Article
Google Scholar
Wang K-J, Makond B, Chen K-H, Wang K-M. A hybrid classifier combining smote with pso to estimate 5-year survivability of breast cancer patients. Appl Soft Comput. 2014;20:15–24. https://doi.org/10.1016/j.asoc.2013.09.014.
Article
Google Scholar
Niazmand K, Tonn K, Kalaras A, Kammermeier S, Boetzel K, Mehrkens J-H, Lueth TC. A measurement device for motion analysis of patients with Parkinson’s disease using sensor based smart clothes. In: 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, IEEE, 2011; p. 9–16.
Rigas G, Tzallas AT, Tsipouras MG, Bougia P, Tripoliti EE, Baga D, Fotiadis DI, Tsouli SG, Konitsiotis S. Assessment of tremor activity in the Parkinson’s disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed. 2012;16(3):478–87. https://doi.org/10.1109/TITB.2011.2182616.
Article
Google Scholar
Bazgir O, Frounchi J, Habibi SAH, Palma L, Pierleoni P. A neural network system for diagnosis and assessment of tremor in parkinson disease patients. In: 2015 22nd Iranian Conference on biomedical engineering (ICBME), IEEE, 2015; p. 1–5. https://doi.org/10.1109/ICBME.2015.7404105.
Novaković JD, Veljović A, Ilić SS, Papić Ž, Milica T. Evaluation of classification models in machine learning. Theory Appl Math Comput Sci. 2017;7(1):39–46.
MathSciNet
Google Scholar
Bazgir O, Habibi SAH, Palma L, Pierleoni P, Nafees S. A classification system for assessment and home monitoring of tremor in patients with Parkinson’s disease. J Med Signals Sens. 2018;8(2):65. https://doi.org/10.4103/jmss.JMSS_50_17.
Article
Google Scholar
Wagner A, Fixler N, Resheff YS. A wavelet-based approach to monitoring Parkinson’s disease symptoms. In: 2017 IEEE International Conference on acoustics, speech and signal processing (ICASSP), IEEE, 2017; p. 5980–984. https://doi.org/10.1109/ICASSP.2017.7953304.
Polat K, A hybrid approach to Parkinson disease classification using speech signal: the combination of smote and random forests. In: 2019 Scientific Meeting on electrical-electronics & biomedical engineering and computer science (EBBT), IEEE. 2019;2019: 1–3. https://doi.org/10.1109/EBBT.2019.8741725.
Preece SJ, Goulermas JY, Kenney LP, Howard D. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng. 2008;56(3):871–9. https://doi.org/10.1109/TBME.2008.2006190.
Article
Google Scholar
Thorp JE, Adamczyk PG, Ploeg H-L, Pickett KA. Monitoring motor symptoms during activities of daily living in individuals with Parkinson’s disease. Front Neurol. 2018;9:1036. https://doi.org/10.3389/fneur.2018.01036.
Article
Google Scholar
Cook DJ, Krishnan NC. Activity learning: discovering, recognizing, and predicting human behavior from sensor data. Hoboken: Wiley; 2015.
Book
Google Scholar
Hssayeni MD, Burack MA, Jimenez-Shahed J, Ghoraani B. Assessment of response to medication in individuals with Parkinson’s disease. Med Eng Phys. 2019;67:33–43. https://doi.org/10.1016/j.medengphy.2019.03.002.
Article
Google Scholar
Jeon H, Lee W, Park H, Lee HJ, Kim SK, Kim HB, Jeon B, Park KS. Automatic classification of tremor severity in Parkinson’s disease using a wearable device. Sensors. 2017;17(9):2067. https://doi.org/10.3390/s17092067.
Article
Google Scholar
Alam MN, Johnson B, Gendreau J, Tavakolian K, Combs C, Fazel-Rezai R. Tremor quantification of Parkinson’s disease-a pilot study. In: 2016 IEEE International Conference on electro information technology (EIT), IEEE. 2016; p. 0755–59. https://doi.org/10.1109/EIT.2016.7535334.
Raza MA, Chaudry Q, Zaidi SMT, Khan MB. Clinical decision support system for Parkinson’s disease and related movement disorders. In: 2017 IEEE International Conference on acoustics, speech and signal processing (ICASSP), IEEE, 2017; p. 1108–112. https://doi.org/10.1109/ICASSP.2017.7952328.
Rissanen SM, Kankaanpää M, Meigal A, Tarvainen MP, Nuutinen J, Tarkka IM, Airaksinen O, Karjalainen PA. Surface emg and acceleration signals in Parkinson’s disease: feature extraction and cluster analysis. Med Biol Eng Comput. 2008;46(9):849–58. https://doi.org/10.1007/s11517-008-0369-0.
Article
Google Scholar
Rezghian Moghadam H, Kobravi H, Homam M. Quantification of Parkinson tremor intensity based on emg signal analysis using fast orthogonal search algorithm. Iran J Electric Electron Eng. 2018;14(2):106–15. https://doi.org/10.22068/IJEEE.14.2.106.
Article
Google Scholar
Ali MM, Taib M, Tahir NM, Jahidin A. Eeg spectral centroid amplitude and band power features: a correlation analysis. In: IEEE 5th Control and System Graduate Research Colloquium. IEEE. 2014;2014:223–6. https://doi.org/10.1109/ICSGRC.2014.6908726.
Ruonala V, Meigal A, Rissanen S, Airaksinen O, Kankaanpää M, Karjalainen P. Emg signal morphology and kinematic parameters in essential tremor and Parkinson’s disease patients. J Electromyogr Kinesiol. 2014;24(2):300–6. https://doi.org/10.1016/j.jelekin.2013.12.007.
Article
Google Scholar
Meigal AY, Rissanen S, Tarvainen M, Georgiadis S, Karjalainen P, Airaksinen O, Kankaanpää M. Linear and nonlinear tremor acceleration characteristics in patients with Parkinson’s disease. Physiol Meas. 2012;33(3):395. https://doi.org/10.1088/0967-3334/33/3/395.
Article
Google Scholar
Cole BT, Roy SH, De Luca CJ, Nawab SH. Dynamical learning and tracking of tremor and dyskinesia from wearable sensors. IEEE Trans Neural Syst Rehabil Eng. 2014;22(5):982–91. https://doi.org/10.1109/TNSRE.2014.2310904.
Article
Google Scholar
Batista GE, Keogh EJ, Tataw OM, De Souza VM. Cid: an efficient complexity-invariant distance for time series. Data Min Knowl Discov. 2014;28(3):634–69. https://doi.org/10.1007/s10618-013-0312-3.
MathSciNet
Article
MATH
Google Scholar
Hooman OM, Oldfield J, Nicolaou MA. Detecting early Parkinson’s disease from keystroke dynamics using the tensor-train decomposition. In: 2019 27th European Signal Processing Conference (EUSIPCO), IEEE, 2019; p.1–5. https://doi.org/10.23919/EUSIPCO.2019.8902562.
Kostikis N, Hristu-Varsakelis D, Arnaoutoglou M, Kotsavasiloglou C. Smartphone-based evaluation of parkinsonian hand tremor: wuantitative measurements vs clinical assessment scores. In: 36th Annual International Conference of the IEEE engineering in medicine and biology society. IEEE. 2014;2014:906–9. https://doi.org/10.1109/EMBC.2014.6943738.
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57. https://doi.org/10.1613/jair.953.
Article
MATH
Google Scholar
He H, Bai Y, Garcia EA, Li S. Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on neural networks (IEEE world congress on computational intelligence). IEEE. 2008;2008:1322–8. https://doi.org/10.1109/IJCNN.2008.4633969.
Han H, Wang W-Y, Mao B-H. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International Conference on intelligent computing, Springer, 2005; p. 878–887. https://doi.org/10.1007/11538059_91.
Hart P. The condensed nearest neighbor rule (corresp.). IEEE Trans Inf Theory. 1968;14(3):515–6. https://doi.org/10.1109/TIT.1968.1054155.
Article
Google Scholar
Tomek I, et al., Two modifications of CNN. IEEE Trans Syst Man Cybern. 1976;6:769–72.
Tomek I, et al., An experiment with the edited nearest-neighbor rule. IEEE Trans Syst Man Cybern. 1976;6:448–52.
Wilson DL. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern. 1972;SMC–2(3):408–21. https://doi.org/10.1109/TSMC.1972.4309137.
MathSciNet
Article
MATH
Google Scholar
Smith MR, Martinez T, Giraud-Carrier C. An instance level analysis of data complexity. Mach Learn. 2014;95(2):225–56. https://doi.org/10.1007/s10994-013-5422-z.
MathSciNet
Article
MATH
Google Scholar
Mani I, Zhang I. kNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of workshop on learning from imbalanced datasets. 2003; vol. 126.
Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor Newsl. 2004;6(1):20–9. https://doi.org/10.1145/1007730.1007735.
Article
Google Scholar
Batista GE, Bazzan AL, Monard MC. et al. Balancing training data for automated annotation of keywords: a case study. In: WOB, 2003; p. 10–18.
Kantardzic M. Data mining: concepts, models, methods, and algorithms. Hoboken: Wiley; 2011.
Book
Google Scholar
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324.
Article
MATH
Google Scholar
Lorena AC, Jacintho LF, Siqueira MF, De Giovanni R, Lohmann LG, De Carvalho AC, Yamamoto M. Comparing machine learning classifiers in potential distribution modelling. Expert Syst Appl. 2011;38(5):5268–75. https://doi.org/10.1016/j.eswa.2010.10.031.
Article
Google Scholar
Manzouri F, Heller S, Dümpelmann M, Woias P, Schulze-Bonhage A. A comparison of machine learning classifiers for energy-efficient implementation of seizure detection. Front Syst Neurosci. 2018;12:43. https://doi.org/10.3389/fnsys.2018.00043.
Article
Google Scholar
Ghorbani R, Ghousi R. Comparing different resampling methods in predicting students’ performance using machine learning techniques. IEEE Access. 2020;8:67899–678911. https://doi.org/10.1109/ACCESS.2020.2986809.
Article
Google Scholar
Leung H, Haykin S. The complex backpropagation algorithm. IEEE Trans Signal Process. 1991;39(9):2101–4. https://doi.org/10.1109/78.134446.
Article
Google Scholar
James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. Berlin: New York; 2013. p. 112. https://doi.org/10.1007/978-1-4614-7138-7.
Book
MATH
Google Scholar
He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–84. https://doi.org/10.1109/TKDE.2008.239.
Article
Google Scholar
Du J, Vong C-M, Pun C-M, Wong P-K, Ip W-F. Post-boosting of classification boundary for imbalanced data using geometric mean. Neural Netw. 2017;96:101–14. https://doi.org/10.1016/j.neunet.2017.09.004.
Article
MATH
Google Scholar
García V, Mollineda RA, Sánchez JS. Index of balanced accuracy: a performance measure for skewed class distributions. In: Iberian Conference on pattern recognition and image analysis, Springer, 2009; p. 441–448. https://doi.org/10.1007/978-3-642-02172-5_57.
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology. 1982;143(1):29–36. https://doi.org/10.1148/radiology.143.1.7063747.
Article
Google Scholar
Michael J. Fox foundation, data sets: MJFF levodopa response study. https://www.michaeljfox.org/data-sets. Accessed 16 Sep 2020.
Chollet F, et al. Keras: The Python deep learning library. Astrophysics source code library; 2018, ascl:1806.022. https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C.
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on artificial intelligence and statistics, 2011; 15:315–23.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012;25:1097–1105.
Bridle JS. Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Neurocomputing, Springer, 1990; p. 227–236. https://doi.org/10.1007/978-3-642-76153-9_28.
Oshiro TM, Perez PS, Baranauskas JA. How many trees in a random forest? In: International Workshop on machine learning and data mining in pattern recognition, Springer, 2012; p. 154–168. https://doi.org/10.1007/978-3-642-31537-4_13.
Berk RA. Classification and regression trees (cart). In: Statistical learning from a regression perspective, Springer, 2008; p. 1–65. https://doi.org/10.1007/978-0-387-77501-2_3.
Elazmeh W, Japkowicz N, Matwin S. Evaluating misclassifications in imbalanced data. In: European Conference on machine learning, Springer, 2006; p. 126–37. https://doi.org/10.1007/11871842_16.
Barandela R, Sánchez JS, Garca V, Rangel E. Strategies for learning in class imbalance problems. Pattern Recognit. 2003;36(3):849–51. https://doi.org/10.1016/S0031-3203(02)00257-1.
Article
Google Scholar
Zweig MH, Campbell G. Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561–77. https://doi.org/10.1093/clinchem/39.4.561.
Article
Google Scholar
Hajian-Tilaki K. Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation. Casp J Intern Med. 2013;4(2):627.
Google Scholar
Kumar R, Indrayan A. Receiver operating characteristic (roc) curve for medical researchers. Indian Pediatr. 2011;48(4):277–87. https://doi.org/10.1007/s13312-011-0055-4.
Article
Google Scholar
Jeon H, Lee W, Park H, Lee HJ, Kim SK, Kim HB, Jeon B, Park KS. High-accuracy automatic classification of parkinsonian tremor severity using machine learning method. Physiol Meas. 2017;38(11):1980.
Article
Google Scholar
Angeles P, Tai Y, Pavese N, Wilson S, Vaidyanathan R. Automated assessment of symptom severity changes during deep brain stimulation (dbs) therapy for Parkinson’s disease. In: 2017 International Conference on rehabilitation robotics (ICORR), IEEE, 2017; p. 1512–517.
Kim HB, Lee WW, Kim A, Lee HJ, Park HY, Jeon HS, Kim SK, Jeon B, Park KS. Wrist sensor-based tremor severity quantification in Parkinson’s disease using convolutional neural network. Comput Biol Med. 2018;95:140–6.
Article
Google Scholar
Dai H, Cai G, Lin Z, Wang Z, Ye Q. Validation of inertial sensing-based wearable device for tremor and bradykinesia quantification. IEEE J Biomed Health Inf. 2020;25(4):997–1005.
Article
Google Scholar
Sigcha L, Pavón I, Costa N, Costa S, Gago M, Arezes P, López JM, De Arcas G. Automatic resting tremor assessment in Parkinson’s disease using smartwatches and multitask convolutional neural networks. Sensors. 2021;21(1):291.
Article
Google Scholar
De Marsico M, Fartade EG, Mecca A. Feature-based analysis of gait signals for biometric recognition. In: ICPRAM 2018-7th International Conference on pattern recognition applications and methods, 2018; p. 630–37.
Ejupi A, Menon C. Detection of talking in respiratory signals: a feasibility study using machine learning and wearable textile-based sensors. Sensors. 2018;18(8):2474. https://doi.org/10.3390/s18082474.
Article
Google Scholar
Madsen H. Time series analysis. Boca Raton: CRC Press; New York, 2007.
Book
Google Scholar
Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol-Heart Circ Physiol. 2000;278(6):H2039–49. https://doi.org/10.1152/ajpheart.2000.278.6.H2039.
Article
Google Scholar
Groeneveld RA, Meeden G. Measuring skewness and kurtosis. J R Stat Soc Ser D (The Statistician). 1984;33(4):391–9. https://doi.org/10.2307/2987742.
Article
Google Scholar
DeCarlo LT. On the meaning and use of kurtosis. Psychol Methods. 1997;2(3):292. https://doi.org/10.1037/1082-989X.2.3.292.
Article
Google Scholar
Wei D, Chun M, Qing W. Analysis and classification of tremor characteristics of hepatolenticular degeneration. In: International Conference on applications and techniques in cyber security and intelligence, Springer, 2019; p. 1276–1285.
Ahlrichs C, Samà Monsonís A. Is “frequency distribution” enough to detect tremor in pd patients using a wrist worn accelerometer? In: PervasiveHealth’14 8th International Conference on pervasive computing technologies for healthcare Oldenburg, Germany-May 20–23, 2014, Association for Computing Machinery (ACM), 2014;65–71. https://doi.org/10.4108/icst.pervasivehealth.2014.254928.
Marsh MT, Schilling DA. Equity measurement in facility location analysis: a review and framework. Eur J Oper Res. 1994;74(1):1–17. https://doi.org/10.1016/0377-2217(94)90200-3.
Article
MATH
Google Scholar
Rigas G, Tzallas AT, Tsalikakis DG, Konitsiotis S, Fotiadis DI, Real-time quantification of resting tremor in the parkinson’s disease, in,. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. 2009;2009:1306–9. https://doi.org/10.1109/IEMBS.2009.5332580.
Tsipouras MG, Tzallas AT, Rigas G, Tsouli S, Fotiadis DI, Konitsiotis S. An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif Intell Med. 2012;55(2):127–35. https://doi.org/10.1016/j.artmed.2012.03.003.
Article
Google Scholar
Giuffrida JP, Riley DE, Maddux BN, Heldman DA, Heldmann DA. Clinically deployable kinesia technology for automated tremor assessment. Mov Disord. 2009;24(5):723–30. https://doi.org/10.1002/mds.22445.
Article
Google Scholar
Perumal SV, Sankar R. Gait and tremor assessment for patients with parkinson’s disease using wearable sensors. Ict Express. 2016;2(4):168–74. https://doi.org/10.1016/j.icte.2016.10.005.
Daneault J-F, Carignan B, Codère CÉ, Sadikot AF, Duval C. Using a smart phone as a standalone platform for detection and monitoring of pathological tremors. Front Hum Neurosci. 2013;6:357. https://doi.org/10.3389/fnhum.2012.00357.
Article
Google Scholar