Skip to main content
Log in

Herbicides widely used in the world: an investigation of toxic effects on Caenorhabditis elegans

  • Original Paper
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Dicamba, paraquat, picloram, clopyralid and linuron are herbicides widely used in agriculture. The aim of the present study is to evaluate the toxicity effects of the herbicides used on survival, fertility and length of Caenorhabditis elegans. Kaplan–Meier Survival Analysis method was used to identify the toxicity effect of herbicides on survival, and ANOVA and Post Hoc tests were used to determine the toxicity effects on fertility and length. In the study, C. elegans was exposed to 5 different concentrations (62.5, 125, 250, 500, 1000 µM) of each herbicide. When the results were evaluated, it was observed that survival (life span) and length (physical growth) were more affected, respectively, by paraquat, dicamba, linuron, picloram and clopyralid herbicides, fertility (egg productivity) were more affected, respectively, by paraquat, linuron, dicamba, picloram and clopyralid herbicides. As a result, it was determined that increasing the dose amounts of herbicides caused many toxic reactions on C. elegans, affecting survival, egg productivity and length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alavanja MC, Dosemeci M, Samanic C, Lubin J, Lynch CF et al (2004) Pesticides and lung cancer risk in the agricultural health study cohort. Am J Epidemiol 160(9):876–885

    PubMed  Google Scholar 

  • Bora S, Vardhan GSH, Deka N, Khataniar L, Gogoi D et al (2021) Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. elegans. Toxicology 447:152632

    CAS  PubMed  Google Scholar 

  • Brouwer A, Longnecker MP, Birnbaum LS, Cogliano J, Kostyniak P et al (1999) Effects of endocrine disruptors at environmental exposure levels-characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect 107(4):639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan I, Liang HC, Khan W, Liu Z, Singh R et al (2009) Pesticides and herbicides. Water Environ Res 81:1731–1816

    CAS  Google Scholar 

  • Casey W, Jacobs A, Maull E, Matheson J, Clarke C et al (2015) A new path forward: the interagency coordinating committee on the validation of alternative methods (ICCVAM) and national toxicology program’s interagency center for the evaluation of alternative toxicological methods (NICEATM). J Am Assoc Lab Anim Sci 54(2):170–173

    PubMed  PubMed Central  Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA 96:5952–5959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caux PY, Kent RA, Fan GT, Grande C (1998) Canadian water quality guidelines for linuron. Environ Toxicol Water Qual 13(1):1–41

    CAS  Google Scholar 

  • Chaudhuri A, Johnson R, Rakshit K, Bednářová A, Lackey K et al (2020) Exposure to Spectracide® causes behavioral deficits in Drosophila melanogaster: Insights from locomotor analysis and molecular modeling. Chemosphere 248:126037

    CAS  PubMed  Google Scholar 

  • Cook JC, Mullin LS, Frame SR, Biegel LB (1993) Investigation of a mechanism for Leydig cell tumorigenesis by linuron in rats. Toxicol Appl Pharmacol 119(2):195–204

    CAS  PubMed  Google Scholar 

  • Darko G, Acquaah SO (2007) Levels of organochlorine pesticides residues in meat. Int J Environ Sci Technol 4(4):521–524

    CAS  Google Scholar 

  • Ding H, Zheng W, Han H, Hu X, Hu B, Wang F (2017) Reproductive toxicity of linuron following gestational exposure in rats and underlying mechanisms. Toxicol Lett 266:49–55

    CAS  PubMed  Google Scholar 

  • Directive C (1998) On the quality of water intended for human consumption. Off J Eur Union 330:32–54

    Google Scholar 

  • Donald DB, Cessna AJ, Sverko E, Glozier NE (2007) Pesticides in surface drinking-water supplies of the northern Great Plains. Environ Health Perspect 115(8):1183–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espandiari P, Ludewig G, Glauert HP, Robertson LW (1998) Activation of hepatic NF-κB by the herbicide Dicamba (2-methoxy-3, 6-dichlorobenzoic acid) in female and male rats. J Biochem Mol Toxicol 12(6):339–344

    CAS  PubMed  Google Scholar 

  • Fairchild JF, Feltz KP, Sappington LC, Allert AL, Nelson KJ et al (2009) An ecological risk assessment of the acute and chronic toxicity of the herbicide picloram to the threatened bull trout (Salvelinus confluentus) and the rainbow trout (Onchorhyncus mykiss). Arch Environ Contam Toxicol 56(4):761–769

    CAS  PubMed  Google Scholar 

  • Felix MA, Braendle C (2010) The natural history of C. elegans. Curr Biol 20(22):965–969

    Google Scholar 

  • Gonzalez NV, Soloneski S, Larramendy ML (2007) The chlorophenoxy herbicide dicamba and its commercial formulation banvel® induce genotoxicity and cytotoxicity in Chinese hamster ovary (CHO) cells. Mutat Res Genet Toxicol Environ Mutagen 634(1–2):60–68

    CAS  Google Scholar 

  • Gray JA, Pickering AD (1999) The neuroscience of personality. In: Pervin LA, John OP (eds) Handbook of personality: theory and research. Guilford Press, New York, pp 277–299

    Google Scholar 

  • Hamilton DJ, Ambrus A, Dieterle RM, Felsot AS, Harris CA et al (2003) Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure Appl Chem 75(8):1123–1155

    CAS  Google Scholar 

  • Hausburg MA, DeKrey GK, Salmen JJ, Palic MR, Gardiner CS (2005) Effects of paraquat on development of preimplantation embryos in vivo and in vitro. Reprod Toxicol 20(2):239–246

    CAS  PubMed  Google Scholar 

  • Hayes WC, Smith FA, John JA, Rao KS (1984) Teratologic evaluation of 3, 6-dichloropicolinic acid in rats and rabbits. Toxicol Sci 4(1):91–97

    CAS  Google Scholar 

  • IuA B, Paliĭ GK, IuV P, Ben’iaminov VO (1990) An immunological and morphological study of focal staphylococcal infection against a background of long-term exposure to the herbicide linuron. Microbiol Zh 52(5):52–59

    Google Scholar 

  • Kim SK (2001) C. elegans: mining the functional genomic landscape. Nat Rev Genet 2(9):681–689

    CAS  PubMed  Google Scholar 

  • Klaasen CD (2007) Casarett and Doull’s toxicology. The basic science of poisons. McGraw-Hill, New York

    Google Scholar 

  • Klein C, Schneider SA, Lang AE (2009) Hereditary parkinsonism: Parkinson disease look-alikes—an algorithm for clinicians to “PARK” genes and beyond. Mov Disord 24(14):2042–2058

    PubMed  Google Scholar 

  • Knight AW, Little S, Houck K, Dix D, Judson R et al (2009) Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCast™ chemicals. Regul Toxicol Pharmacol 55(2):188–199

    CAS  PubMed  Google Scholar 

  • Kogevinas M (2001) Human health effects of dioxins: cancer, reproductive and endocrine system effects. APMIS 109(103):223–232

    Google Scholar 

  • Kronberg MF, Clavijo A, Moya A, Rossen A, Calvo D et al (2018) Glyphosate-based herbicides modulate oxidative stress response in the nematode C. elegans. Comp Biochem Physiol C Toxicol Pharmacol 214:1–8

    CAS  PubMed  Google Scholar 

  • Lee DJ, Senseman SA, Sciumbato AS, Jung SC, Krutz LJ (2003) The effect of titanium dioxide alumina beads on the photocatalytic degradation of picloram in water. J Agric Food Chem 51(9):2659–2664

    CAS  PubMed  Google Scholar 

  • Lima TRR, Martins AC, Pereira LC, Aschner M (2022) Toxic Effects Induced by Diuron and Its Metabolites in C. elegans. Neurotox Res 2022:1–12

    Google Scholar 

  • Lithgow GJ, Driscoll M, Phillips P (2017) A long journey to reproducible results. Nature 548(7668):387–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maharaj S, El Ahmadie N, Rheingold S, El Chehouri J, Yang L et al (2020) Sub-lethal toxicity assessment of the phenylurea herbicide linuron in developing zebrafish (Danio rerio) embryo/larvae. Neurotoxicol Teratol 81:106917

    CAS  PubMed  Google Scholar 

  • Mayes MA, Dill DC (1984) The acute toxicity of picloram, picloram potassium salt, and picloram triisopropanolamine salt to aquatic organisms. Environ Toxicol Chem 3(2):263–269

    CAS  Google Scholar 

  • McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2):995–1006

    PubMed  Google Scholar 

  • McVey KA, Snapp IB, Johnson MB, Negga R, Pressley AS et al (2016) Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicol Teratol 55:23–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad F, Liu Y, Wang N, Zhao L, Zhou Y et al (2022) Neuroprotective effects of cannabidiol on dopaminergic neurodegeneration and α-synuclein accumulation in C. elegans models of Parkinson’s disease. Neurotoxicol 93:128–139

    CAS  Google Scholar 

  • National Institute of Environmental Health Sciences (2021) Two pesticides rotenone and paraquat-linked to Parkinson's disease study suggests. Publishing SciencedailyWeb. https://www.sciencedaily.com/releases/2011/02/110214115442. Accessed 14 Sep 2021

  • Ossowska K, Śmiałowska M, Kuter K, Wierońska J, Zięba B et al (2006) Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson’s disease. Neuroscience 141(4):2155–2165

    CAS  PubMed  Google Scholar 

  • Porazzi E, Martinez MP, Fanelli R, Benfenati E (2005) GC–MS analysis of dichlobenil and its metabolites in groundwater. Talanta 68(1):146–154

    CAS  PubMed  Google Scholar 

  • Rajcan I, Swanton CJ (2001) Understanding maize-weed competition: resource competition, lightquality and the whole plant. Field Crops Res 71:139–150

    Google Scholar 

  • Rand GM, Petrocelli SR (1985) Fundamentals of aquatic toxicology methods and applications. Hemispheres Publishing, New York

    Google Scholar 

  • Scassellati G, Pasquini R, Moretti M, Villarini M, Fatigoni C et al (1997) In vivo studies on genotoxicity of pure and commercial linuron. Mutat Res Genet Toxicol Environ Mutagen 390(3):207–221

    Google Scholar 

  • Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180(1):65–77

    CAS  PubMed  Google Scholar 

  • Tang L, Zeng GM, Shen GL, Li YP, Zhang Y et al (2008) Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ Sci Technol 42(4):1207–1212

    CAS  PubMed  Google Scholar 

  • Taspinar MS, Aydin M, Sigmaz B, Yildirim N, Agar G (2017) Protective role of humic acids against picloram-induced genomic instability and DNA methylation in Phaseolus vulgaris. Environ Sci Pollut Res 24(29):22948–22953

    CAS  Google Scholar 

  • Thi Hue N, Nguyen TPM, Nam H (2018) Hoang Tung N (2018) Paraquat in surface water of some streams in Mai Chau Province, the Northern Vietnam. Concentrations profiles and human risk assessments. J Chem 8:8521012

    Google Scholar 

  • Tierney KB, Sekela MA, Cobbler CE, Xhabija B, Gledhill M et al (2011) Evidence for behavioral preference toward environmental concentrations of urban-use herbicides in a model adult fish. Environ Toxicol Chem 30(9):2046–2054

    CAS  PubMed  Google Scholar 

  • Tizaoui C, Mezughi K, Bickley R (2011) Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques. Desalination 273(1):197–204

    CAS  Google Scholar 

  • Tomlin CDS (2000) The pesticide manual a world compendium. British Crop Protection Council, UK

  • Topal A, Alak G, Altun S, Erol HS, Ataman AM (2017) Evaluation of 8-hydroxy-2-deoxyguanosine and NFkB activation, oxidative stress response, acetylcholinesterase activity, and histopathological changes in rainbow trout brain exposed to linuron. Environ Toxicol Pharmacol 49:14–20

    CAS  PubMed  Google Scholar 

  • Yang J, Wang XZ, Hage DS, Herman PL, Weeks DP (1994) Analysis of dicamba degradation by pseudomonas maltophilia using high-performance capillary electrophoresis. Anal Biochem 219(1):37–42

    CAS  PubMed  Google Scholar 

  • Zimdhal RL (2004) Weed crop competition. Blackwell, London

    Google Scholar 

Download references

Acknowledgements

The present study was supported by Sivas Cumhuriyet University Scientific Research Projects (CÜBAP) within the scope of doctoral thesis project numbered F-634. I would like to thank my daughter, Eylül Zöngür, who supported me during the thesis work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Zöngür.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zöngür, A., Sari, M. Herbicides widely used in the world: an investigation of toxic effects on Caenorhabditis elegans. BIOLOGIA FUTURA 74, 171–182 (2023). https://doi.org/10.1007/s42977-023-00152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42977-023-00152-9

Keywords

Navigation