Skip to main content
Log in

Genome-wide identification, expression profiling, and network analysis of calcium and cadmium transporters in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Calcium (Ca) and cadmium (Cd) are transition metals coexisting in the ecosystem. Ca is indispensable for the growth and development of plants as well as animals, while Cd is regarded as a toxic heavy metal for the living system. The transportation of Cd in the biological systems often used the pathways of Ca because of chemical similarities. High concentrations of cadmium replace Ca, Mn, and Zn from their respective metalloprotein sites and strongly associated with them. Replaced minerals from their metalloprotein sites are often released as an oxidative ion that is detrimental to it. The common transportation mechanism of Ca and Cd is implicit in the role of common and similar transporters for transporting them in plants. Thus, our study was done to identify the transporters for Ca and Cd and characterize them for similarity in terms of cotransportation system. A profile-based search program identified 44 transporters genes for Ca transportation and 70 genes for cadmium transportation. They were categorized into different groups based on the presence of signature motifs and domains. Identified transporters were characterized for genomic distribution, gene structure, annotation, conserved signature motifs, and domain. Further, cis motif analysis, heat map, gene ontology, and protein–protein interaction were conducted for Ca and Cd transporter genes. In silico expression showed Os05g0319800-1304 and Os0319800-6065 transporter genes were overexpressed for Ca and Os07g00232800-40298 and Os07g00384500-25924 transporter genes overexpressed for Cd transporter. These genes could be used as a candidate genes for enhancing the Ca concentration with reduced Cd content in rice using biotechnological approaches. Twenty-seven genes were found as the common transporters for Ca and Cd. Both active and passive transporter mechanisms act as cotransporters for Ca and Cd. The common signature motifs and domains can be targeted for the characterization of cotransporters of different minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data generated have been given in the manuscript.

Abbreviations

NCBI:

National Centre for Biotechnology Information

SMART:

Simple modular architecture research tools

MEME:

Multiple Em for motif elicitation

KDa:

Kilo Dalton

RPKM:

Read per kilobase million

DEG:

Differentially expressed genes

References

  • Ali H, Khan E (2018) What are heavy metals? Long-standing controversy over the scientific use of the term’ heavy metals’-proposal of a comprehensive definition. Toxicol Environ Chem 100(1):6

    Article  CAS  Google Scholar 

  • Bascom CS, Hepler PK, Bezanilla M (2018) Interplay between ions, the cytoskeleton, and cell wall properties during tip growth. Plant Physiol 176:28. https://doi.org/10.1104/pp.17.01466

    Article  CAS  PubMed  Google Scholar 

  • Beto JA (2015) The role of calcium in human aging. Clin Nutri Res 4(1):1

    Article  Google Scholar 

  • Bevza OV (2003) Ca2+/H+ obmin kriz' plazmatychnu membranu v systemi mekhnizmiv transportuvannia ioniv Ca ta vodniu [Ca2+/H+ exchange through plasma membrane in the system of transport of calcium and hydrogen ions]. Ukr Biokhim Zh (1999). 75(5):28–40

  • Brini M, Carafoli E (2011) The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a004168

    Article  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom

  • Choong G, Liu Y, Templeton DM (2014) Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 211:54

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ouyang Y, Fan Y, Qiu B, Zhang G (2018) The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root. J Exp Bot 69:5279. https://doi.org/10.1093/jxb/ery293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas H, Frank M (2020) TBtools-an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I (2018) Calcium transport across plant membranes:mechanisms and functions. New Phytol 220:49

    Article  CAS  PubMed  Google Scholar 

  • Dvorak M, Schnegg R, Niederwanger M, Pedrini-Martha V, Ladurner P (2020) Cadmium pathways in snails follow a complementary strategy between metallothionein detoxification and auxiliary inactivation by phytochelatins. Int J Mol Sci 21:7

    Article  CAS  Google Scholar 

  • Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q et al (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28:666. https://doi.org/10.1016/j.cub.2018.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29. https://doi.org/10.1093/nar/gkr367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808-815

    Article  CAS  PubMed  Google Scholar 

  • Grover GJ, Malm J (2008) Pharmacological profile of the selective mitochondrial F1F0 ATP hydrolase inhibitor BMS-199264 in myocardial ischemia. Cardiovasc Ther 26:287. https://doi.org/10.1111/j.1755-5922.2008.00065.xz

    Article  CAS  PubMed  Google Scholar 

  • Geng HX, Wang L (2019) Cadmium: toxic effects on placental and embryonic development. Environ Toxicol Pharmacol 67:102

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Taj G, Pandey D, Gupta S, Kumar A (2011) Genome-wide comparative in silico analysis of calcium transporters of rice and sorghum. Genom Proteom Bioinform 9:138

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R (2013) Open source drug discovery consortium. In-silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8:e73957

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Guan M, Chen M, Cao Z (2021) NRT2. 1, a major contributor to cadmium uptake controlled by high-affinity nitrate transporters. Ecotoxicol Environ Saf 218:112269

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Bheri M, Bisht D, Pandey GK (2022) Calcium signaling and transport machinery: potential for development of stress tolerance in plants. Curr Plant Biol 29:100235

    Article  CAS  Google Scholar 

  • Hao L, Rigaud JL, Inesi G (1994) Ca2+/H+ countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca-ATPase and exogenous lipids. J Biol Chem 269:14268

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa N, Tomioka R, Takenaka C (2011) Effects of calcium on cadmium uptake and transport in the tree species Gamblea innovans. Soil Sci Plant Nutr 57:691

    Article  CAS  Google Scholar 

  • Ito K, Fujie T, Shimomura M, Nakano T, Yamamoto C (2022) TGF-β1 potentiates the cytotoxicity of cadmium by ınduction of a metal transporter, ZIP8, mediated by the ALK5-Smad2/3 and ALK5-Smad3-p38 MAPK signal pathways in cultured vascular endothelial cells. Int J Mol Sci 23:448. https://doi.org/10.3390/ijms23010448

    Article  CAS  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4. https://doi.org/10.1186/1939-8433-6-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Phys Plant 116:368

    Article  CAS  Google Scholar 

  • Kumari M, Pandey S, Chauhan D, Pandey H, Divakar S, Meena K, Singh A (2023) Differential expression of the AP2/EREBP gene family in the contrasting genotypes of maize provides insights of abiotic stress tolerance. Cereal Res Commun 11:1–6

    Google Scholar 

  • Lubkowitz M (2011) The oligopeptide transporters: a small gene family with a diverse group of substrates and functions. Mol Plant 4:407

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Sands ZA, Biggin PC (2016) A numbering system for MFS transporter proteins. Front Mol Biol 3:21. https://doi.org/10.3389/fmolb.2016.00021

    Article  CAS  ADS  Google Scholar 

  • Liu H, Zhao H, Wu L, Liu A, Zhao FJ (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687

    Article  CAS  PubMed  Google Scholar 

  • Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW (2019) OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49 (W1): W293-W296. https://doi.org/10.1093/nar/gkab301

  • Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49:D458. https://doi.org/10.1093/nar/gkaa937

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Mei X, Li T, Yang S, Qin L, Li B, Zu Y (2021) Effects of calcium application on activities of membrane transporters in Panax notoginseng under cadmium stress. Chemosphere 262:127905

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC (2021) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265. https://doi.org/10.1093/nar/gkz991

    Article  CAS  Google Scholar 

  • Marchetti C (2013) Role of calcium channels in heavy metal toxicity. ISRN Toxicol p 184360

  • Moller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646

    Article  CAS  PubMed  Google Scholar 

  • Medrano-Soto A, Moreno-Hagelsieb G, McLaughlin D, Ye ZS, Hendargo KJ (2018) Bioinformatic characterization of the anoctamin superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS ONE 13:e0192851. https://doi.org/10.1371/journal.pone.0192851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412. https://doi.org/10.1093/nar/gkaa913

    Article  CAS  PubMed  Google Scholar 

  • Ozyigit AH, Genc BN (2020) Cadmium in plants, humans and the environment. Front Life Sci Relat Technol 1:12

    Google Scholar 

  • Ortiz-Ramírez C, Michard E, Simon AA, Damineli DSC, HernándezCoronado M et al (2017) Glutamate receptor-like channels are essential for chemotaxis and reproduction in mosses. Nature 549:91. https://doi.org/10.1038/nature23478

    Article  CAS  PubMed  ADS  Google Scholar 

  • Prasad MNV (2013) Heavy metal stress in plants: from biomolecules to ecosystems. Springer Science & Business Media

  • Pike S, Patel A, Stacey G, Gassmann W (2009) Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. Plant Cell Physiol 50:1923

    Article  CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278

    Article  CAS  PubMed  Google Scholar 

  • Per TS, Masood A, Khan NA (2017) Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cad-mium stress on photosynthesis in mustard (Brassica juncea L.). Nitric Oxide 68:111

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2016) Impact of heavy metals on physiological processes of plants: with special reference to photosyn-thetic system. In: Plant responses to xenobiotics, (Ed. By Singh, A., Prasad, S., Singh, R; Springer Singapore.) p 127.

  • Stokes DL, Auer M, Zhang P, Kuhlbrandt W (1999) Comparison of H+-ATPase and Ca2+-ATPase suggests that a large conformational change initiates P-type ion pump reaction cycles. Curr Biol 9:672

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK (2011) Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav 6:1813. https://doi.org/10.4161/psb.6.11.17587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 5:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi F (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang CM, Juang KW (2015) Alleviation effects of calcium and potassium on cadmium rhizotoxicity and absorption by soybean and wheat roots. J Plant Nutr Soil Sci 178:748

    Article  CAS  Google Scholar 

  • Yalcin IE, Ozyigit II, Dogan I, Demir G, Yarci C (2020) Using the Turkish red pine tree to monitor heavy metal pollution. Pol J Environ Stud 29:3881

    Article  CAS  Google Scholar 

  • Zhang S, Pan Y, Tian W, Dong M, Zhu H (2017) Arabidopsis CNGC14 mediates calcium influx required for tip growth in root hairs. Mol Plant 10:1004. https://doi.org/10.1016/j.molp.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhu Y, Yu L, Yang M, Zou X (2022) Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.). Cells 11:569. https://doi.org/10.3390/cells11030569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Agricultural Biotechnology and Molecular Biology for providing facilities and infrastructure to perform the mentioned work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Kumari.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Ethical approval

None of the ethical issue is associated with the present work.

Additional information

Communicated by P. Stephen Baenziger.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothari, S., Sharma, V.K., Singh, A. et al. Genome-wide identification, expression profiling, and network analysis of calcium and cadmium transporters in rice (Oryza sativa L.). CEREAL RESEARCH COMMUNICATIONS (2024). https://doi.org/10.1007/s42976-024-00492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42976-024-00492-9

Keywords

Navigation