Skip to main content
Log in

Exploring trophic role similarity and phylogenetic relatedness between species in food webs

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Understanding the mechanism shaping species assemblages is a fundamental goal in ecology. In the past, two hypotheses have been suggested. One is the filtering hypothesis, where environmental factors select for species of similar traits such that they co-occur in similar niches. The other is the competitive exclusion hypothesis, where related species are driven far apart by competition such that they overdisperse across various niches. Here, we investigate the relationship between species assemblages and their phylogenetic relatedness from a network perspective by using five separate ecosystems ranging from oceans to an inland lake. We quantified the similarity in species network positions in a food web and clustered them into different trophic role groups; using an online database, we quantified their phylogenetic distances. We then investigated whether related species tend to underdisperse or overdisperse across different trophic role groups. In general, our results suggest that the environmental filtering process is the dominant force shaping the species assemblage of those ecosystems. However, there are some possible cases where related species are driven by competition such that they evolve to adopt different trophic roles in relatively closed ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amarasekare, P., & Nisbet, R. M. (2001). Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. The American Naturalist, 158, 572–584.

    Article  CAS  PubMed  Google Scholar 

  • Beer, A., Ingram, T., & Randhawa, H. S. (2019). Role of ecology and phylogeny in determining tapeworm assemblages in skates (Rajiformes). Journal of Helminthology, 93, 738–751.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard, J., Pinnegar, J., & Mackinson, S. (2002). Exploring marine mammal-fishery interactions using ‘Ecopath with Ecosim’: Modelling the Barents Sea ecosystem. Science Series Technical Report, CEFAS Lowestoft, 117, 52.

    Google Scholar 

  • Borgatti, S. P., & Everett, M. G. (1989). The class of all regular equivalences: Algebraic structure and computation. Social Networks, 11, 65–88.

    Article  Google Scholar 

  • Cadotte, M. W., & Davies, T. J. (2016). Phylogenies in ecology: A guide to concepts and methods. Princeton University Press.

    Book  Google Scholar 

  • Cavender-Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693–715.

    Article  PubMed  Google Scholar 

  • Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366.

    Article  Google Scholar 

  • Christensen, V., Beattie, A., Buchanan, C., Ma, H., Martell, S. J., Latour, R. J., Preikshot, D., Sigrist, M. B., Uphoff, J. H., Walters, C. J. et al. (2009). Fisheries ecosystem model of the Chesapeake Bay: Methodology, parameterization, and model exploration. NOAA Tech Memo. NMFS-F/SPO-106.

  • Christensen, V., Beattie, A., Buchanan, C., Ma, H., Martell, S. J. D., Latour, R. J., Preikshot, D., Sigrist, M. B., Uphoff, J. H., Walters, C. J., Wood R. J., & Townsend, H. (2009). Fisheries ecosystem model of the Chesapeake Bay: Methodology, parameterization, and model explanation. U.S. Department of Commerce, NOAA Tech. Memo. NMFS-F/SPO-106, 146 p.

  • da Silva, V. E., Silva-Firmiano, L. P., Teresa, F. B., Batista, V. S., Ladle, R. J., & Fabré, N. N. (2019). Functional traits of fish species: Adjusting resolution to accurately express resource partitioning. Frontiers in Marine Science, 6, 303.

    Article  Google Scholar 

  • Davis, A. M., & Betancur-R, R. (2017). Widespread ecomorphological convergence in multiple fish families spanning the marine-freshwater interface. Proceedings of the Royal Society of London B: Biological Sciences, 284, 20170565.

    Google Scholar 

  • Denisenko, S. G. (2004). Structurally-functional characteristics of the Barents Sea zoobenthos. Proceedings of the Zoological Institute of the Russian Academy of Sciences, 300, 43–52.

    Google Scholar 

  • Eklöf, A., Helmus, M. R., Moore, M., & Allesina, S. (2012). Relevance of evolutionary history for food web structure. Proceedings of the Royal Society B: Biological Sciences, 279, 1588–1596.

    Article  PubMed  Google Scholar 

  • Eklöf, A., Jacob, U., Kopp, J., Bosch, J., Castro-Urgal, R., Chacoff, N. P., Dalsgaard, B., de Sassi, C., Galetti, M., Guimaraes, P. R., & Lomascolo, S. B. (2013). The dimensionality of ecological networks. Ecology Letters, 16, 577–583.

    Article  PubMed  Google Scholar 

  • Ferdy, J. B., & Molofsky, J. (2002). Allee effect, spatial structure and species coexistence. Journal of Theoretical Biology, 217, 413–424.

    Article  PubMed  Google Scholar 

  • Finke, D. L., & Snyder, W. E. (2008). Niche partitioning increases resource exploitation by diverse communities. Science, 321, 1488–1490.

    Article  CAS  PubMed  Google Scholar 

  • Frank, H. K., Frishkoff, L. O., Mendenhall, C. D., Daily, G. C., & Hadly, E. A. (2017). Phylogeny, traits, and biodiversity of a neotropical bat assemblage: Close relatives show similar responses to local deforestation. The American Naturalist, 190, 200–212.

    Article  PubMed  Google Scholar 

  • Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., & Prinzing, A. (2015). Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29, 600–614.

    Article  Google Scholar 

  • Gómez, J. M., Verdú, M., & Perfectti, F. (2010). Ecological interactions are evolutionarily conserved across the entire tree of life. Nature, 465, 918–921.

    Article  PubMed  Google Scholar 

  • Holt, R. D. (1984). Spatial heterogeneity, indirect interactions, and the coexistence of prey species. The American Naturalist, 124, 377–406.

    Article  PubMed  Google Scholar 

  • Ives, A. R., & Godfray, H. C. (2006). Phylogenetic analysis of trophic associations. The American Naturalist, 168, E1–E14.

    Article  CAS  PubMed  Google Scholar 

  • Jordán, F., Endrédi, A., Liu, W.-C., & D’Alelio, D. (2018). Aggregating a plankton food web: Mathematical versus biological approaches. Mathematics, 6, 336.

    Article  Google Scholar 

  • Krasnov, B. R., Fortuna, M. A., Mouillot, D., Khokhlova, I. S., Shenbrot, G. I., & Poulin, R. (2012). Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. The American Naturalist, 179, 501–511.

    Article  PubMed  Google Scholar 

  • Krasnov, B. R., Pilosof, S., Stanko, M., Morand, S., Korallo-Vinarskaya, N. P., Vinarski, M. V., & Poulin, R. (2014). Co-occurrence and phylogenetic distance in communities of mammalian ectoparasites: Limiting similarity versus environmental filtering. Oikos, 123, 63–70.

    Article  Google Scholar 

  • Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor, W. W. (2003). Compartments revealed in food-web structure. Nature, 426, 282–285.

    Article  CAS  PubMed  Google Scholar 

  • Lafferty, K. D., Hechinger, R. F., Shaw, J. C., Whitney, K., & Kuris, A. M. (2006). Food webs and parasites in a salt marsh ecosystem. Disease ecology: Community structure and pathogen dynamics (pp. 119–134). Oxford University Press.

    Chapter  Google Scholar 

  • Lai, S. M., Liu, W. C., & Jordán, F. (2012). On the centrality and uniqueness of species from the network perspective. Biology Letters, 8, 570–573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine, S. (1980). Several measures of trophic structure applicable to complex food webs. Journal of Theoretical Biology, 83, 195–207.

    Article  Google Scholar 

  • Levins, R., & Culver, D. (1971). Regional coexistence of species and competition between rare species. Proceedings of the National Academy of Sciences of the United States of America, 68, 1246–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luczkovich, J. J., Borgatti, S. P., Johnson, J. C., & Everett, M. G. (2003). Defining and measuring trophic role similarity in food webs using regular equivalence. Journal of Theoretical Biology, 220, 303–321.

    Article  PubMed  Google Scholar 

  • Mackinson, S., & Daskalov, G. (2007). An ecosystem model of the north sea to support an ecosystem approach to fisheries management: Description and parameterization. Cefas Science Series Technical Report, 142, 196.

    Google Scholar 

  • Martinez, N. D. (1993). Effects of resolution on food web structure. Oikos, 66, 403–412.

    Article  Google Scholar 

  • May, R. M. (1973). Stability and complexity in model ecosystems. Princeton University Press.

    Google Scholar 

  • Moeller, D. A. (2005). Pollinator community structure and sources of spatial variation in plant–pollinator interactions in Clarkia xantiana ssp xantiana. Oecologia, 142, 28–37.

    Article  PubMed  Google Scholar 

  • Mouquet, N., Devictor, V., Meynard, C. N., Munoz, F., Bersier, L.-F., Chave, J., Couteron, P., Dalecky, A., Fontaine, C., Gravel, D., et al. (2012). Ecophylogenetics: Advances and perspectives. Biological Reviews, 87, 769–785.

    Article  PubMed  Google Scholar 

  • Okey, T. A., & Pauly, D. (1999). Trophic mass-balance model of Alaska’s Prince William Sound ecosystem, for the post-spill period 1994–1996: 2nd Edition [R]. Retrieved April 10, 2019, from https://open.library.ubc.ca/collections/facultyresearchandpublications/52383/items/1.0354483

  • Olmo Gilabert, R., Navia, A. F., De La Cruz-Agüero, G., Molinero, J. C., Sommer, U., & Scotti, M. (2019). Body size and mobility explain species centralities in the Gulf of California food web. Community Ecology, 20, 149–160.

    Article  Google Scholar 

  • Ponisio, L. C., Valdovinos, F. S., Allhoff, K. T., Gaiarsa, M. P., Barner, A., Guimarães, P. R., Jr., Hembry, D. H., Morrison, B., & Gillespie, R. (2019). A network perspective for community assembly. Frontiers in Ecology and Evolution, 7, 103.

    Article  Google Scholar 

  • Qian, H., & Sandel, B. (2017). Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Global Ecology and Biogeography, 26, 1258–1269.

    Article  Google Scholar 

  • Rafferty, N. E., & Ives, A. R. (2013). Phylogenetic trait-based analyses of ecological networks. Ecology, 94, 2321–2333.

    Article  PubMed  Google Scholar 

  • Rezende, E. L., Albert, E. M., Fortuna, M. A., & Bascompte, J. (2009). Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecology Letters, 12, 779–788.

    Article  PubMed  Google Scholar 

  • Sánchez-Hernández, J., Cobo, F., & Amundsen, P.-A. (2015). Food web topology in high mountain lakes. PLoS ONE, 10, e0143016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sargent, R. D., & Ackerly, D. D. (2008). Plant–pollinator interactions and the assembly of plant communities. Trends in Ecology & Evolution, 23, 123–130.

    Article  Google Scholar 

  • Sebastián-González, E., & Green, A. J. (2017). Phylogenetic relatedness of co-occurring waterbird communities: A test of Darwin’s competition-relatedness hypothesis. Journal of Avian Biology, 48, 1372–1382.

    Article  Google Scholar 

  • Streicker, D. G., Turmelle, A. S., Vonhof, M. J., Kuzmin, I. V., McCracken, G. F., & Rupprecht, C. E. (2010). Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science, 329, 676–679.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara, G., Bersier, L. F., & Schoenly, K. (1997). Effects of taxonomic and trophic aggregation on food web properties. Oecologia, 112, 272–284.

    Article  PubMed  Google Scholar 

  • Valiente-Banuet, A., & Verdú, M. (2007). Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters, 10, 1029–1036.

    Article  PubMed  Google Scholar 

  • van Nouhuys, S., & Hanski, I. (2005). Metacommunities of butterflies, their host plants, and their parasitoids. In M. Holyoak, M. A. Leibold, & R. D. Holt (Eds.), Metacommunities: Spatial dynamics and ecological communities (pp. 99–121). University of Chicago Press.

    Google Scholar 

  • Wassermann, S., & Faust, K. (1994). Social network analysis. Cambridge University Press.

    Book  Google Scholar 

  • Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505.

    Article  Google Scholar 

  • Weiher, E., & Keddy, P. (2001). Ecological assembly rules: Perspectives, advances, retreats. Cambridge University Press.

    Google Scholar 

  • White, H. C., & Reitz, K. P. (1983). Graph and semigroup homomorphisms on networks of relations. Soc. Networks, 5, 193–235.

    Article  Google Scholar 

  • Wilcox, T. M., Schwartz, M. K., & Lowe, W. H. (2018). Evolutionary community ecology: Time to think outside the (taxonomic) box. Trends in Ecology & Evolution, 33, 240–250.

    Article  Google Scholar 

  • Yodzis, P., & Winemiller, K. O. (1999). In search of operational trophospecies in a tropical aquatic food web. Oikos, 87, 327–340.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the comments and suggestions that improved our paper substantially from reviewers and the editor. HWC was supported by Ministry of Science and Technology (MOST) Taiwan, Grant #107-2621-M-415-001 and 108-2621-M-415-002. WCL acknowledges financial support from the Thematic Research Program (AS-TP-109-M07) funded by Academia Sinica, Taiwan, project title: Analysis, Structure, Characteristics, Experimentation of Network and Databases (ASCEND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsuan-wien Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Sm., Liu, Wc. & Chen, Hw. Exploring trophic role similarity and phylogenetic relatedness between species in food webs. COMMUNITY ECOLOGY 22, 427–440 (2021). https://doi.org/10.1007/s42974-021-00067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-021-00067-2

Keywords

Navigation