Skip to main content
Log in

Functional traits for ecological studies: a review of characteristics of Drosophilidae (Diptera)

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Studies in the area of functional ecology not only aid in our understanding of the dynamics and structure of communities, but also help elucidate the mechanistic consequences of habitat changes and their implications for species conservation, the nature of biological interactions and the provision of ecosystem services. However, trait selection and measurement are usually not standardized between studies, even for groups that have been widely studied, such as the Drosophilidae (Diptera). In order to suggest a standardized framework for trait selection and measurement for the Drosophilidae, here we reviewed the literature published between September 2018 and June 2021. The review returned 52 relevant papers, and based on the traits presented, we organized three categories of functional traits which we suggest need to be analyzed in order to understand functional pattern of the Drosophilidae: habitat perception, flight performance, and ecophysiological responses. Habitat perception includes those traits that provide the ability to recognize an environment and access its available resources. Flight performance includes those traits related to flight and mobility, while ecophysiological responses include those traits related to energy allocation, survival, and reproductive efficiency. Based on these categories, we projected the expected results for a broad application of the traits we selected in studies with Drosophilidae in natural environments, for example, using the functional approach for a comprehensive diagnosis of the relationship between Drosophilidae and their environments. We encourage a wide use of our framework for both basic and applied studies of Drosophilidae, particularly for those that seek to test hypotheses regarding community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguirre-Gutiérrez, A., Kissling, D., Carvalheiro, L. G., WallisDeVries, M. F., Franzén, M., & Biesmeijer, J. (2016). Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 6, 24451. https://doi.org/10.1038/srep24451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amundson, R., & Lauder, G. (1994). Function without purpose: The uses of causal role function in evolutionary biology. Biology and Phylosophy, 9, 443–469.

    Article  Google Scholar 

  • Anagnostou, C., Dorsch, M., & Rohlfs, M. (2010). Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomologia Experimentalis Et Applicata, 136, 1–11. https://doi.org/10.1111/j.1570-7458.2010.00997.x

    Article  Google Scholar 

  • Araújo, E. D., Costa, M., Chaud-Netto, J., & Fowler, H. G. (2004). Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Interference of flight range and possible ecological implications. Brazilian Journal of Biology, 64, 563–568. https://doi.org/10.1590/S1519-69842004000400003

    Article  Google Scholar 

  • Arnan, X., Cerdá, X., & Retana, J. (2014). Ant functional responses along environmental gradients. Journal of Animal Ecology, 83, 1398–1408.

    Article  Google Scholar 

  • Atallah, A., Teixeira, L., Salazar, R., Zaragoza, G., & Kopp, A. (2014). The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proceedings of the Royal Society B, 281, 20132840. https://doi.org/10.1098/rspb.2013.2840

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkinson, W. D. (1979). A comparison of the reproductive strategies of domestic species of Drosophila. Journal of Animal Ecology, 48, 53–54.

    Article  Google Scholar 

  • Atkinson, W. D., & Shorrocks, B. (1977). Breeding site specificity in the domestic species of Drosophila. Oecologia, 29, 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Avondet, J., Blair, R. B., Berg, D. J., & Ebbert, M. A. (2003). Drosophila (Diptera: Drosophilidae) Response to changes in ecological parameters across an urban gradient. Environment Entomology, 32, 347–358.

    Article  Google Scholar 

  • Azevedo, R. B. R., James, A. C., McCabe, J., & Partridge, L. (1998). Latitudinal variation of wing: Thorax size ratio and wing-aspect ratio in Drosophila melanogaster. Evolution, 52, 1353–1362.

    PubMed  Google Scholar 

  • Bächli, G. (2021). TaxoDros: The database on taxonomy of Drosophilidae, v.1.03. Database Available from: http://www.taxodros.uzh.ch/. Accessed 17 February 2021

  • Balmford, A., Jones, I. L., & Thomas, A. L. R. (1993). On avian asymmetry: evidence of natural selection for symmetrical tails and wings in birds. Proceedings of the Royal Society of London, 252, 245–251.

    Article  Google Scholar 

  • Beldade, P., Koops, K., & Brakefield, P. M. (2002). Modularity, individuality, and evo-devo in butterfly wings. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14262–14267. https://doi.org/10.1073/pnas.222236199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitner-Mathé, B. C., & Klaczko, L. B. (1999). Plasticity of Drosophila melanogaster wing morphology: Effects of sex, temperature, and density. Genetica, 105, 203–210. https://doi.org/10.1023/A:1003765106652

    Article  PubMed  Google Scholar 

  • Bochdanovits, Z., & De Jong, G. (2003). Temperature dependent larval resource allocation shaping adult body size in Drosophila melanogaster. Journal of Evolutionary Biology, 16(6), 1159–1167. https://doi.org/10.1016/j.gecco.2018.e00432

    Article  CAS  PubMed  Google Scholar 

  • Boulétreau-Merle, J., Allemand, R., Cohet, Y., & David, J. R. (1982). Reproductive strategy in Drosophila melanogaster: Significance of a genetic divergence between temperate and tropical populations. Oecologia, 53(3), 323–329.

    Article  PubMed  Google Scholar 

  • Brisson, J. A., DeToni, D. C., Duncan, I., & Templeton, A. R. (2005). Abdominal pigmentation variation in Drosophila polymorpha: geographic variation in the trait, and underlying phylogeography. Evolution, 59(5), 1046–1059. https://doi.org/10.1111/j.0014-3820.2005.tb01043.x

    Article  CAS  PubMed  Google Scholar 

  • Brisson, J. A., Wilder, J., & Hollocher, H. (2006). Phynologenetic analysis of the Cardini group of Drosophila with respect to changes in pigmentation. Evolution, 60(6), 1228–1241. https://doi.org/10.1111/j.0014-3820.2006.tb01201.x

    Article  CAS  PubMed  Google Scholar 

  • Burnet, B., Connolly, K., & Dennis, L. (1971). The function and processing of auditory information in the courtship behaviour of Drosophila melanogaster. Animal Behaviour, 19(2), 409–415. https://doi.org/10.1016/S0003-3472(71)80025-8

    Article  CAS  PubMed  Google Scholar 

  • Capy, P., David, J. R., & Robertson, A. (1988). Thoracic trident pigmentation in natural populations of Drosophila simulans: A comparison with Drosophila melanogaster. Heredity, 61, 263–268.

    Article  Google Scholar 

  • Carson, H. L. (1971). The ecology of Drosophila breeding sites. Honolulu: Harold L. Lyon Arboretum Lecture, 2, 1–27.

    Google Scholar 

  • Cavasini, R., Buschini, M. L. T., Machado, L. P. B., & Mateus, R. P. (2014). Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies. Brazilian Journal of Biology, 74(4), 761–768. https://doi.org/10.1590/1519-6984.00113

    Article  CAS  Google Scholar 

  • Cavender-Bares, J. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12(7), 693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x

    Article  PubMed  Google Scholar 

  • Cavicchi, S., Pezzoli, C., & Giorgi, G. (1981). Correlation between characters as related to developmental pattern in Drosophila. Genetica, 56, 189–195.

    Article  Google Scholar 

  • Cianciaruso, M., Silva, I. A., & Batalha, M. A. (2009). Diversidades filogenética e funcional: Novas abordagens para a Ecologia de Comunidades. Biota Neotropica, 9(3), 93–103. https://doi.org/10.1590/S1676-06032009000300008

    Article  Google Scholar 

  • Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., ter Steege, H., Morgan, H. D., Van der Heijden, M. G. A., Pausas, J. G., & Poorter, H. (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335–380.

    Article  Google Scholar 

  • Coyne, J. A., & Beecham, E. (1987). Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics, 117(4), 727–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cumming, J. M., & Wood, D. M. (2010). Adult morphology and terminology. In B. V. Brown, A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley, & E. Zumbado (Eds.), MA Manual of Central American Diptera (pp. 9–50). Ottawa: NRC Research Press.

    Google Scholar 

  • David, J. R., Capy, P., & Gauthier, J. P. (1990). Abdominal pigmentation and growth temperature in Drosophila melanogaster: Similarities and differences in the norms of reaction of successive segments. Journal of Evolutionary Biology, 3, 429–445.

    Article  Google Scholar 

  • David, J. R., Moreteau, B., Gauthier, J. P., Pétavy, G., Stockel, A., & Imasheva, A. G. (1994). Reaction norms of size characters in relation to growth temperature in Drosophila melanogaster: An isofemale lines analysis. Genetics Selection Evolution, 26, 229–251.

    Article  Google Scholar 

  • De Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., Berg, M. P., Cipriotti, P., Feld, C. K., Hering, D., Silva, P. M. D. A., Potts, S. G., Sandin, L., Sousa, J. P., Storkey, J., Wardle, D. A., & Harrison, P. A. (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity Conservation, 19(10), 2873–2893. https://doi.org/10.1007/s10531-010-9850-9

    Article  Google Scholar 

  • Díaz, S., & Cabido, M. (2001). Vive la différence: Plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16(8), 646–655. https://doi.org/10.1016/S0169-5347(01)02283-2

    Article  Google Scholar 

  • Dickinson, M. H., & Lighton, J. R. (1995). Muscle efficiency and elastic storage in the flight motor of Drosophila. Science, 268(5207), 87–90.

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky, T., & Pavan, C. (1950). Local and seasonal variations in relative frequencies of species of Drosophila in Brazil. Journal of Animal Ecology, 19(1), 1–14.

    Article  Google Scholar 

  • Fartyal, R. S., Dewan, S., Sarswat, M., & Fartyal, P. (2017). Morphometric analysis of wild-caught flies of Drosophila (Diptera: Drosophilidae) species: Altitudinal pattern of body size traits, wing morphology and sexual dimorphism. Türkiye Entomoloji Dergisi, 41(4), 367–382.

    Google Scholar 

  • Ferreira, L. B., & Tidon, R. (2005). Colonizing potential of Drosophilidae (Insecta, Diptera) in environments with different grades of urbanization. Biolgical Conservation, 14(8), 1809–1821. https://doi.org/10.1007/s10531-004-0701-4

    Article  Google Scholar 

  • Flower, J. W. (1964). On the origin of flight in insects. Journal of Insect Physiology, 10, 81–88.

    Article  Google Scholar 

  • Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B., Simpson, N., Mayfield, M. M., & DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters, 12, 22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x

    Article  PubMed  Google Scholar 

  • Foelix, R. F., Stocker, R. F., & Steinbrecht, R. A. (1989). Fine structure of a sensory organ in the arista of Drosophila melanogaster and some dipterans. Cell and Tissue Research, 258, 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Frankino, W. A., Zwaan, B. J., Stern, D. L., & Brakefield, P. M. (2005). Natural selection and developmental constraints in the evolution of allometries. Science, 307, 718–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furtado, I. S., & Martins, M. B. (2018). The impacts of land use intensification on the assembly of Drosophilidae (Diptera). Global Ecology and Conservation, 5(16), e00432. https://doi.org/10.1016/j.gecco.2018.e00432

    Article  Google Scholar 

  • Gallé, R., & Batáry, P. (2019). Trait-based paradise—About the importance of real functionality. Community Ecology, 20(3), 314–316. https://doi.org/10.1556/168.2019.20.3.11

    Article  Google Scholar 

  • Gao, H., Lai, S., Zhai, Y., Lv, Z., Zheng, L., Yu, Y., & Ren, F.-S. (2020). Comparison of the antennal sensilla and compound eye sensilla in four Drosophila (Diptera: Drosophilidae) species. Florida Entomologist, 102(4), 747–754. https://doi.org/10.1653/024.102.0412

    Article  Google Scholar 

  • Gaspar, P., Arif, S., Sumner-Rooney, L., Kittelmann, M., Bodey, A., Stern, D. L., Nunes, M. D. S., & McGregor, A. P. (2020). Characterization of the genetic architecture underlying eye size variation within Drosophila melanogaster and Drosophila simulans. G3 Genes Genomes Genetics, 10(3), 1005–1018. https://doi.org/10.1534/g3.119.400877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerisch, M., Agostinelli, V., Henle, K., & Dziock, F. (2012). More species, but all do the same: Contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos, 121(4), 508–515. https://doi.org/10.1111/j.1600-0706.2011.19749.x

    Article  Google Scholar 

  • Gilbert, P., Moreteau, B., Moreteau, J. C., & David, J. R. (1996). Growth temperature and adult pigmentation in two Drosophila sibling species: An adaptive convergence of reaction norms in sympatric populations. Evolution, 50, 2346–2353.

    Article  Google Scholar 

  • Gilbert, P., Moreteau, B., Moreteau, J. C., Parkash, R., & David, J. R. (1998). Light body pigmentation in Indian Drosophila melanogaster: A likely adaptation to a hot and arid climate. Journal of Genetics, 77, 13–20. https://doi.org/10.1007/BF02933036

    Article  Google Scholar 

  • Gottschalk, M. S., De Toni, D. C., Valente, V. L. S., & Hofmann, P. R. P. (2007). Changes in Brazilian Drosophilidae (Diptera) assemblages across an urbanization gradient. Neotropical Entomology, 36(6), 848–862. https://doi.org/10.1590/S1519-566X2007000600005

    Article  PubMed  Google Scholar 

  • Götz, K. G. (1970). Fractionation of Drosophila populations according to optomotor traits. Journal of Experimental Biology, 52, 419–436. https://doi.org/10.1242/jeb.52.2.419

    Article  Google Scholar 

  • Grimaldi, D. A. (1987). Phylogenetics and taxonomy of Zygothrica (Diptera, Drosophilidae). Bulletin of the American Museum of Natural History, 186, 103–268.

    Google Scholar 

  • Grimaldi, D. A. (1990). A phylogenetic, revised classification of the genera in the Drosophilida (Diptera). Bulletin of the American Museum of Natural History, 197, 1–139.

    Google Scholar 

  • Grimaldi, D., & Jaenike, J. (1984). Competition in Natural populations of Mycophagous Drosophila. Ecology, 65(4), 1113–1120.

    Article  Google Scholar 

  • Hegde, S. N., Chethan, B. K., & Krishna, M. S. (2005). Mating success of males with and without wing patch in Drosophila biarmipes. Indian Journal of Experimental Biology, 43, 902–909.

    CAS  PubMed  Google Scholar 

  • Hofmann, A. A., Woods, R. E., Collins, E., Wallin, K., White, A., & Mckenzie, J. A. (2005). Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Australian Journal Entomology, 44(3), 233–243. https://doi.org/10.1111/j.1440-6055.2005.00469.x

    Article  Google Scholar 

  • Honek, A. (1996). Geographical variation in thermal requirements for insect development. European Journal of Entomology, 93(3), 303–312.

    Google Scholar 

  • Hubbell, S. P. (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87(6), 1397–1398.

    Article  Google Scholar 

  • Huey, R. B., & Kingsolver, J. G. (1989). Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology and Evolution, 4(5), 131–135. https://doi.org/10.1016/0169-5347(89)90211-5

    Article  CAS  PubMed  Google Scholar 

  • Huey, R. B., & Pascual, M. (2009). Partial thermoregulatory compensation by a rapidly evolving invasive species along a latitudinal line. Ecology, 90(7), 1715–1720. https://doi.org/10.1890/09-0097.1

    Article  PubMed  Google Scholar 

  • Huey, R. B., Wakefield, T., Crill, W. D., & Gilchrist, G. W. (1995). Within-and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity, 74, 216–223. https://doi.org/10.1038/hdy.1995.30

    Article  PubMed  Google Scholar 

  • Iwaizumi, R., Kaneda, M., & Iwahashi, O. (1997). Correlation of length of terminalia of males and females among nine species of Bactrocera (Diptera: Tephritidae) and differences among sympatric species of B. dorsalis complex. Annals of the Entomological Society of America, 90(5), 664–666.

    Article  Google Scholar 

  • Keesey, I. W., Grabe, V., Gruber, L., Koerte, S., Obiero, G. F., Bolton, G., Khallaf, M. A., Kunert, G., Lavista-Llanos, S., Valenzano, D. R., Rybak, J., Barrett, B. A., Knaden, M., & Hansson, B. S. (2019). Inverse resource allocation between vision and olfaction across the genus Drosophila. Nature Communications, 10, 1162–1178. https://doi.org/10.1038/s41467-019-09087-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennington, W. J., Killeen, J. R., Goldstein, D. B., & Partridge, L. (2003). Rapid laboratory evolution of adult wing area in Drosophila melanogaster in response to humidity. Evolution, 57(4), 932–936. https://doi.org/10.1554/0014-3820(2003)057[0932:RLEOAW]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Klug, W. S., Campbell, D., & Cummings, M. R. (1974). External morphology of the egg of Drosophila melanogaster Meigen (Diptera: Drosophilidae). International Journal of Insect Morphology and Embryology, 3(1), 33–40. https://doi.org/10.1016/S0020-7322(74)81004-4

    Article  Google Scholar 

  • Krijger, C. L., Peters, Y. C., & Sevenster, J. G. (2001). Competitive ability of Neotropical Drosophila predicted from larval development time. Oikos, 92, 325–332. https://doi.org/10.1034/j.1600-0706.2001.920215.x

    Article  Google Scholar 

  • Kutch, I. C., Sevgili, H., Wittman, T., & Fedorka, K. M. (2014). Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. Journal of Experimental Biology, 217(20), 3664–3669.

    Google Scholar 

  • Lachaise, D., & Tsacas, L. (1983). Breeding-sites in tropical African drosophilids. In M. Asburner, H. L. Carson, & J. N. Thompson (Eds.), The genetics and biology of Drosophila (3rd ed., pp. 221–232). London: Academic Press.

    Google Scholar 

  • Lehmann, F.-O. (2001). The efficiency of aerodynamic force production in Drosophila. Comparative Biochemistry and Physiology, 131(1), 77–88. https://doi.org/10.1016/S1095-6433(01)00467-6

    Article  CAS  PubMed  Google Scholar 

  • Lewin, R. (1985). On the origin of wings. Science, 230(4724), 428–429.

    Article  CAS  PubMed  Google Scholar 

  • Magnacca, K. N., Foote, D., & OGrady, P. M. (2008). A review of the endemic Hawaiian Drosophilidae and their host plants. Zootaxa, 1728(1), 1–58. https://doi.org/10.11646/zootaxa.1728.1.1

    Article  Google Scholar 

  • Martins, M. B. (1989). Invasão de fragmentos florestais por espécies oportunistas de Drosophila (Diptera, Drosophilidae). Acta Amazonica, 19(1), 265–271. https://doi.org/10.1590/1809-43921989191271

    Article  Google Scholar 

  • Mata, R. A., McGeoch, M. A., & Tidon, R. (2008). Drosophilid assemblages as a bioindicador system of human disturbance in the Brazilian Savanna. Biodiversity and Conservation, 17(12), 2899–2916. https://doi.org/10.1007/s10531-008-9403-7

    Article  Google Scholar 

  • Mata, R. A., McGeoch, M. A., & Tidon, R. (2010). Drosophilids (Insecta, Diptera) as Tools for Conservation Biology. Natureza and Conservação, 8(1), 60–65. https://doi.org/10.4322/natcon.00801009

    Article  Google Scholar 

  • Mata, R. A., Roque, F., & Tidon, R. (2015). Measuring the variability of the drosophilid assemblages associated with forests of the Brazilian savanna across temporal and spatial scales. Natureza and Conservação, 13(2), 166–170. https://doi.org/10.1016/j.ncon.2015.11.005

    Article  Google Scholar 

  • Mateus, R. P., Buschini, M. L. T., & Sene, F. M. (2006). The Drosophila community in xerophytic vegetation of the upper Parana-Paraguay River Basin. Brazilian Journal of Biology, 66(2B), 719–729. https://doi.org/10.1590/S1519-69842006000400016

    Article  CAS  Google Scholar 

  • McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • Mendes, MF, Valer, FB, Vieira, JGA, Blauth, ML, & Gottschalk, MS (2017). Diversity of Drosophilidae (Insecta, Diptera) in the Restinga Forest of southern Brazil Revista Brasileira de Entomologia, 61(3):248–256. https://doi.org/10.1016/jrbe201705002

  • Michalak, P., Minkov, I., Helin, A., Lerman, D. N., Bettencourt, B. R., Feder, M. E., Korol, A. B., & Nevo, E. (2001). Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in “Evolution Canyon” Israel. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13195–13200. https://doi.org/10.1073/pnas.231478298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller, A. P., & Swaddle, J. P. (1997). Asymmetry, developmental stability, and evolution. Oxford University Press.

    Google Scholar 

  • Moraes, E. M., Manfrim, M. H., Laus, A. C., Rosasa, R. S., Bomfin, S. C., & Sene, F. M. (2004b). Wing shape heritability and morphological divergence of the sibling species Drosophila mercatorum and Drosophila paranaensis. Heredity, 92(5), 466–473. https://doi.org/10.1038/sj.hdy.6800442

    Article  CAS  PubMed  Google Scholar 

  • Moraes, E. M., Spressola, V. L., Prado, P. R. R., Costa, L. F., & Sene, F. M. (2004a). Divergence in wing morphology among sibling species of the buzatti cluster. Journal of Zoological Systematics and Evolutionary Research, 42(2), 154–158. https://doi.org/10.1111/j.1439-0469.2004.00256.x

    Article  Google Scholar 

  • Moretti, M., Dias, A. T. C., De Bello, F., Alternatt, F., Chown, S. L., Azcarate, F. M., Bell, J. R., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J. P., Ellers, J., & Berg, M. P. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31, 558–567. https://doi.org/10.1111/1365-2435.12776

    Article  Google Scholar 

  • Newbold, T., Scharlemann, J. P. W., Butchart, S. H. M., Sekercioglu, Ç. H., Alkemade, R., Booth, H., & Purves, D. W. (2013). Ecological traits affect the response of tropical forest bird species to land-use intensity. Proceedings of the Royal Society b: Biological Sciences, 280, 20122131. https://doi.org/10.1098/rspb.2012.2131

    Article  PubMed  PubMed Central  Google Scholar 

  • Nock, CA, Vogt, RJ & Beisner BE (2016) Functional traits. In: Els. Wiley. https://doi.org/10.1002/9780470015902.a0026282

  • Nunney, L., & Cheung, W. (1997). The effects of temperature on bodysize and fecundity in female Drosophila melanogaster: Evidence for adaptive plasticity. Evolution, 51, 1529–1535.

    PubMed  Google Scholar 

  • Parkash, R., Ramniwas, S., Lambhod, C., & Kajla, B. (2011). Adaptive changes in the plasticity of body melanisation in generalist, cold and warm adapted Drosophila species. Acta Entomologica Sinica, 54(10), 1155–1164.

    Google Scholar 

  • Pavoine, S., & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: A unified approach. Biological Reviews, 86(4), 792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.x

    Article  CAS  PubMed  Google Scholar 

  • Peluffo, A. E., Nuez, I., Debat, V., Savisaar, R., Stern, D. L., & Ortogogozo, V. (2015). A major lócus controls a genetic shape difference involved in reproductive isolation between Drosophila yakuba and Drosophila santomea. G3 Genes, Genomes, Genetics, 5(12), 2893–2901. https://doi.org/10.1534/g3.115.023481

    Article  CAS  Google Scholar 

  • Penariol, L. V., & Madi-Ravazzi, L. (2013). Edge-interior differences in the species richness and abundance of drosophilids in a semideciduous forest fragment. Springerplus, 2(1), 1–7.

    Article  Google Scholar 

  • Pendry, C. A., Dick, J., Pullan, M. R., Knees, S. G., Miller, A. G., Neale, S., & Watson, M. F. (2007). In search of a functional flora-towards a greater integration of ecology and taxonomy. Plant Ecology, 192(2), 161–167. https://doi.org/10.1007/s11258-007-9304-y

    Article  Google Scholar 

  • Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x

    Article  PubMed  Google Scholar 

  • Petchey, O. L., Hector, A., & Gaston, K. J. (2004). How do different measures of functional diversity perform? Ecology, 85(3), 847–857. https://doi.org/10.1890/03-0226

    Article  Google Scholar 

  • Pipkin, S. B. (1953). Fluctuations in Drosophila populations in a Tropical area. The American Naturalist, 87(836), 317–322.

    Article  Google Scholar 

  • Pipkin, S. B. (1962). Mesonotal color polymorphism in Drosophila L. lebanonensis. Genetics, 47(9), 1275–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pipkin, S. B. (1964). New flower breeding species of Drosophila. Procedings of the Entomological Society of Washington, 66(4), 217–245.

    Google Scholar 

  • Pipkin, S. B., Rodríguez, R. L., & León, J. (1966). Plant host specificity among flower-feeding Neotropical Drosophila (Diptera: Drosophilidae). American Naturalist, 100, 135–156.

    Article  Google Scholar 

  • Pitchers, W., Nye, J., Márquez, E. J., Kowalski, A., Dworkin, I., & Houle, D. (2019). A multivariate genome-wide association study of wing shape in Drosophila melanogaster. Genetics, 211(4), 1429–1447. https://doi.org/10.1534/genetics.118.301342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pla, L., Casanoves, F., & Di Rienzo, J. (2012). Functional groups. In L. Pla, F. Casanoves, & J. Di Rienzo (Eds.), Quantifying functional biodiversity (pp. 9–25). Berlin: Springer.

    Chapter  Google Scholar 

  • Podgaiski, L. R., Mendonça, M. S., Jr., & Pillar, V. D. (2011). O uso de atributos funcionais de invertebrados terrestres na ecologia: O que, como e por quê? Oecologia Australis, 15(4), 835–853.

    Article  Google Scholar 

  • Poppe, J. L., Valente, V. L. S., & Schmitz, H. J. (2013). Population dynamics of Drosophilids in the Pampa Biome in response to temperature. Neotropical Entomology, 42(3), 269–277. https://doi.org/10.1007/s13744-013-0125-5

    Article  CAS  PubMed  Google Scholar 

  • Powell, J. R. (1997). Progress and prospects in evolutionary biology: The Drosophila Model (p. 562). Oxford University Press.

    Google Scholar 

  • Prud’homme, B., Gompel, N., Rokas, A., Kassner, V. A., Williams, T. M., Yeh, S. D., et al. (2003). Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature, 44, 1050–1053. https://doi.org/10.1038/nature04597.

    Article  CAS  PubMed  Google Scholar 

  • Rajpurohit, S., Parkash, R., & Ramniwas, S. (2008). Body melanization and its adaptative role in thermoregulation and tolerance against desiccating conditions in drosophilids. Entomological Research, 38(1), 49–60. https://doi.org/10.1111/j.1748-5967.2008.00129.x

    Article  Google Scholar 

  • Ramaekers, A., Claeys, A., Kapun, M., Mouchel-Vielh, E., Delphine, P., Weinberger, S., Grillenzoni, N., Dardalhon-Cuménal, D., Yan, J., Wolf, R., Flatt, T., Buchner, E., & Hassan, B. A. (2019). Altering the temporal regulation of one transcription factor drives evolutionary trade-offs between head sensory organs. Developmental Cell, 50(780–792), e787. https://doi.org/10.1016/j.devcel.2019.07.027

    Article  CAS  Google Scholar 

  • Reich, P. B. (2003). The evolution of plant functional variations: Traits, spectra, and strategies. Interantional Journal of Plant Sciences, 164(S3), 143–164.

    Article  Google Scholar 

  • Ricklefs, RE (2003). A economia da natureza Guanabara Koogan Editora, Rio de Janeiro.

  • Saavedra, C. C. R., Callegari-Jacques, S. M., Napp, M., & Valente, V. L. S. (1995). A descriptive and analytical study of four neotropical drosophilid communities. Journal of Zoological Systematics and Evolutionaty Research, 33(2), 62–74. https://doi.org/10.1111/j.1439-0469.1995.tb00210.x

    Article  Google Scholar 

  • Sabath, M. D., Richmond, R. C., & Torella, R. M. (1973). Temperature-mediated seasonal color changes in Drosophila putrida. American Midland Naturalist, 90, 509–512.

    Article  Google Scholar 

  • Sayad, S. A., & Yassin, A. (2019). Quantifying the extent of morphological homoplasy: A phylogenetic analysis of 490 characters in Drosophila. Evolution Letters, 3(3), 286–298. https://doi.org/10.1002/evl3.115

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevenster, J. G., & Van Alphen, J. J. M. (1993). A life history trade-off Drosophila species and community structure in variable environments. Journal of Animal Ecology, 62(4), 720–736.

    Article  Google Scholar 

  • Shanbhag, S. R., Müller, B., & Steinbrecht, R. A. (1999). Atlas of olfactory organs of Drosophila melanogaster: 1. Types, external organization, innervation and distribution of olfactory sensilla. International Journal of Insect Morphology and Embryology, 28(4), 377–397. https://doi.org/10.1016/S0020-7322(99)00039-2

    Article  Google Scholar 

  • Spaniol, R. L., Duarte, LdaS., Mendonça, MdeS., & Iserhard, C. A. (2019). Combining functional traits and phylogeny to disentangling Amazonian butterfly assemblages on anthropogenic gradients. Ecosphere,. https://doi.org/10.1002/ecs2.2837

    Article  Google Scholar 

  • Sokoloff, A. (1966). Morphological variation in natural and experimental populations of Drosophila pseudoobscura and Drosophila persimilis. Evolution, 20, 49-71. https://doi.org/10.2307/2406148.

    Article  PubMed  Google Scholar 

  • Starmer, W. T., & Wolf, L. L. (1989). Causes of variation in wing loading among Drosophila species. Biological Journal of Linnean Society, 37, 247–261. https://doi.org/10.1111/j.1095-8312.1989.tb01903.x

    Article  Google Scholar 

  • Stocker, R. F. (1994). The organization of the chemosensory system in Drosophila melanogaster: A rewiew. Cell and Tissue Research, 275, 3–26. https://doi.org/10.1007/BF00305372

    Article  CAS  PubMed  Google Scholar 

  • Tallefer, A. G., & Wheeler, T. A. (2012). Community assembly of Diptera following restoration of mined boreal bogs: Taxonomic and functional diversity. Journal of Insect Conservation, 16(2), 165–176. https://doi.org/10.1007/s10841-011-9403-x

    Article  Google Scholar 

  • Tantawy, A. O. (1964). Studies on natural populations of drosophila. III. Morphological and genetic differences of wing length in drosophila melanogaster and D. simulans in relation to season. Evolution, 18(4), 560–570.

    Article  Google Scholar 

  • Thomas, A. L. R. (1993). The aerodynamic costs of asymmetry in the wings and tail of birds: Asymmetric birds can’t fly around tight corners. Proceedings of the Royal Society B, Biological Sciences, 254(1341), 181–189. https://doi.org/10.1098/rspb.1993.0144

    Article  Google Scholar 

  • Throckmorton, L. H. (1975). The phylogeny, ecology and geography of Drosophila. Handbook of Genetics, 3(17), 422–469.

    Google Scholar 

  • Triplehorn, CA & Johnson, NF (2011). Estudo dos Insetos. Editora Cengage Learning, São Paulo. 7ed, 809p.

  • Tscharntke, T., Sekercioglu, C. H., Dietsch, T. V., Sodhi, N. S., Hoehn, P., & Tylianakis, J. M. (2008). Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology, 89, 944–951. https://doi.org/10.1890/07-0455.1

    Article  PubMed  Google Scholar 

  • Ulrich, W. (2012). Null model tests for niche conservatism, phylogenetic assortment, and habitat filtering. Methods in Ecology and Evolution, 3(5), 930–939. https://doi.org/10.1111/j.2041-210X.2012.00217.x

    Article  Google Scholar 

  • Verberk, W. (2011). Explaining general patterns in species abundance and distributions. Nature Education Knowledge, 3(10), 38.

    Google Scholar 

  • Vijendravarma, R. K., Narasimha, S., & Kawecki, T. J. (2010). Effects of parental larval diet on egg size and offspring traits in Drosophila. Biology Letters, 6, 238–241. https://doi.org/10.1098/rsbl.2009.0754

    Article  PubMed  Google Scholar 

  • Walker, B. H. (1992). Biodiversity and ecological redundancy. Conservation Biology, 6(1), 18–23.

    Article  Google Scholar 

  • Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125–159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

  • Wiescher, P. T., Pearce-Duvet, J. M. C., & Feener, D. H. (2012). Wies Assembling an ant community: Species functional traits reflect environmental filtering. Oecologia, 169, 1063–1074.

    Article  PubMed  Google Scholar 

  • Wittkopp, P. J., Caroll, S. B., & Kopp, A. (2003). Evolution in black and white: Genetic control of pigment patterns in Drosophila. Trends in Genetics, 19, 495–504. https://doi.org/10.1016/s0168-9525(03)00194-x

    Article  CAS  PubMed  Google Scholar 

  • Wong, M. K. L., Guénard, B., & Lewis, O. T. (2019). Trait-based ecology of terrestrial arthropods. Biological Reviews, 94(3), 999–1022. https://doi.org/10.1111/brv.12488

    Article  PubMed  Google Scholar 

  • Yassin, A. (2013). Phylogenetic classification of the Drosophilidae Rondani (Diptera): The role of morphology in the postgenomic era. Systematic Entomology, 38(2), 349–364. https://doi.org/10.1111/j.1365-3113.2012.00665.x

    Article  Google Scholar 

  • Yassin, A., & Orgogozo, V. (2013). Coevolution between male and female genitalia in the Drosophila melanogaster species subgroup. PLoS ONE, 8, e57158. https://doi.org/10.1371/journal.pone.0057158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Maria João Ramos Pereira, Dr Cristiano Agra Iserhard and Dr Marlúcia Martins for their intellectual contributions and comments. We thank Dr Gabriela Pirani for helping with editing the figures. We are also grateful to Dr Karen Mustin and Dr Rebeca Zanini for checking this manuscript for English. This study was financed by Agência do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant Nos. 141578/2018-1 and 314120/2018-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Mendes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, M.F., Gottschalk, M.S., Corrêa, R.C. et al. Functional traits for ecological studies: a review of characteristics of Drosophilidae (Diptera). COMMUNITY ECOLOGY 22, 367–379 (2021). https://doi.org/10.1007/s42974-021-00060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-021-00060-9

Keywords

Navigation