Skip to main content
Log in

Superconvergence of UWLDG Method for One-Dimensional Linear Sixth-Order Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

This paper concerns the superconvergence property of the ultraweak-local discontinuous Galerkin (UWLDG) method for one-dimensional linear sixth-order equations. The crucial technique is the construction of a special projection. We will discuss in three different situations according to the remainder of k, the highest degree of polynomials in the function space, divided by 3. We can prove the \((2k-1)\) th-order superconvergence for the cell averages when \(k\equiv 0\) or 2 (mod 3). But if \(k\equiv \)1 (mod 3), we can only prove a \((2k-2)\) th-order superconvergence. The same superconvergence orders can also be gained for the errors of numerical fluxes. We will also prove the superconvergence of order \(k+2\) at some special quadrature points. Some numerical examples are given at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191(11), 1097–1112 (2002)

    Article  MathSciNet  Google Scholar 

  2. Adjerid, S, Issaev, D.: Superconvergence of the local discontinuous Galerkin method applied to diffusion problems. In: Proceedings of the Third MIT Conference on Computational Fluid and Solid Mechanics, vol. 3, pp. 1040–1042. Elsevier, Boston, MA (2005)

  3. Adjerid, S., Massey, T.C.: Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Eng. 195(25), 3331–3346 (2006)

    Article  MathSciNet  Google Scholar 

  4. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  Google Scholar 

  5. Cao, W., Li, D., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM Math. Model. Numer. Anal. 51(2), 467–486 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53(4), 1651–1671 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56(2), 732–765 (2018)

    Article  MathSciNet  Google Scholar 

  8. Cao, W., Shu, C.-W., Zhang, Z.M.: Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: Math. Model. Numer. Anal. 51(6), 2213–2235 (2017)

  9. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52(5), 2555–2573 (2014)

    Article  MathSciNet  Google Scholar 

  10. Chen, A., Cheng, Y., Liu, Y., Zhang, M.: Superconvergence of ultra-weak discontinuous Galerkin methods for the linear Schrödinger equation in one dimension. J. Sci. Comput. 82(1), 22 (2020)

    Article  Google Scholar 

  11. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

    Article  MathSciNet  Google Scholar 

  12. Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227(22), 9612–9627 (2008)

    Article  MathSciNet  Google Scholar 

  13. Cheng, Y., Shu, C.-W.: Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations. Comput. Struct. 87(11/12), 630–641 (2009)

    Article  Google Scholar 

  14. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47(6), 4044–4072 (2010)

    Article  MathSciNet  Google Scholar 

  15. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  16. Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47(5), 3240–3268 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ji, L., Xu, Y.: Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8(2), 252–283 (2011)

  18. Liu, H., Yan, J.: A local discontinuous Galerkin method for the Korteweg-de Vries equation with boundary effect. J. Comput. Phys. 215(1), 197–218 (2006)

    Article  MathSciNet  Google Scholar 

  19. Liu, Y., Shu, C.-W., Zhang, M.: Superconvergence of energy-conserving discontinuous Galerkin methods for linear hyperbolic equations. Commun. Appl. Math. Comput. 1(1), 101–116 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liu, Y., Tao, Q., Shu, C.-W.: Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation. ESAIM: Math. Model. Numer. Anal. 54(6),1797–1820 (2020)

  21. Tao, Q., Cao, W., Zhang, Z.: Superconvergence analysis of the ultra-weak local discontinuous Galerkin method for one dimensional linear fifth order equations. J. Sci. Comput. 88(3), 63 (2021)

    Article  MathSciNet  Google Scholar 

  22. Tao, Q., Xu, Y.: Superconvergence of arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(5), 2142–2165 (2019)

    Article  MathSciNet  Google Scholar 

  23. Tao, Q., Xu, Y., Shu, C.-W.: An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. Math. Comput. 89(326), 2753–2783 (2020)

    Article  MathSciNet  Google Scholar 

  24. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7(1), 1 (2010)

    Article  MathSciNet  Google Scholar 

  25. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)

    Article  MathSciNet  Google Scholar 

  26. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

    Article  MathSciNet  Google Scholar 

  27. Zhong, W.X.: On precise integration method. J. Comput. Appl. Math. 163(1), 59–78 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The research of Yan Xu was partially supported by the NSFC Grant No. 12071455.

Appendices

Proof of Lemma 1

We will prove this lemma by induction. Since \(\omega _u^{(0)},\,\omega _v^{(0)}\perp \mathcal {P}^{k-3}(I_j)\), we can easily deduce from the definitions of \(\omega _u^{(i)}\) and \(\omega _v^{(i)}\) that

$$\begin{aligned} \omega _u^{(1)},\,\omega _v^{(1)}\perp \mathcal {P}^{k-6}(I_j). \end{aligned}$$

Thus, we can write

$$\begin{aligned} {\omega _u^{(1)}\mid _{I_j}=\sum _{m=k-5}^{k} c_{j,m}^1 L_{j,m},\ \omega _v^{(1)}\,\Bigg |\,_{I_j}=\sum _{m=k-5}^{k} d_{j,m}^1 L_{j,m}.} \end{aligned}$$

Then, we are going to estimate \(c^1_{j,m}\) and \(d^1_{j,m}\). If \(f\perp \mathcal {P}^0(I_j)\), we can define \(D^{-1}f(x)=\overline{h_j}\int _{x_{j-\frac{1}{2}}}^x f(t)\ \textrm{d}t,\,x\in I_j\), where \(\overline{h_j}=\frac{h_j}{2}\). And \(D^{-n}=(D^{-1})^n\) for any \(n\in \mathbb {N}\). Taking \(\varphi ={D^{-3}L_{j,m}},\ m=k-5,\,k-4,\,k-3\), respectively, in (11), we have

$$\begin{aligned} \begin{aligned} \frac{4}{h_j^2}\frac{2}{2m+1}c^1_{j,m}&=-\int _{I_j}\omega _v^{(0)}D^{-3}L_{j,m}\ \textrm{d}x \\&\leqslant \Vert \omega _v^{(0)}\Vert _{I_j}\Vert D^{-3}L_{j,m}\Vert _{I_j} \\&\lesssim h^{k+1+\frac{1}{2}}\Vert u\Vert _{k+4,I_j}. \end{aligned} \end{aligned}$$

Thus,

$$\begin{aligned} \vert c^1_{j,m}\vert \lesssim h^{k+\frac{7}{2}}\Vert u\Vert _{k+4,I_j},\quad m=k-5,\,k-4,\,k-3. \end{aligned}$$

Similarly, we have

$$\begin{aligned} \vert d^1_{j,m}\vert \lesssim h^{k+\frac{7}{2}}\Vert u\Vert _{k+4,I_j},\quad m=k-5,\,k-4,\,k-3. \end{aligned}$$

From (11), we can also obtain

$$\begin{aligned} \sum _{m=k-2}^{k}L_m(-1)c_{j,m}^1=\sum _{m=k-5}^{k-3}L_m(-1)c_{j,m}^1, \\ \sum _{m=k-2}^{k}L_m^\prime (-1)c_{j,m}^1=\sum _{m=k-5}^{k-3}L_m^\prime (-1)c_{j,m}^1, \\ \sum _{m=k-2}^{k}L_m^{\prime \prime }(-1)c_{j,m}^1=\sum _{m=k-5}^{k-3}L_m^{\prime \prime }(-1)c_{j,m}^1. \end{aligned}$$

Thus,

$$\begin{aligned} \sum _{j=1}^N\sum _{m=k-2}^k \left( c_{j,m}^1\right) ^2\lesssim \sum _{j=1}^N\sum _{m=k-5}^{k-3} \left( c_{j,m}^1\right) ^2\lesssim h^{2k+7}\Vert u\Vert _{k+4}^2. \end{aligned}$$

Thus,

$$\begin{aligned} \begin{aligned} \Vert \omega _u^{(1)}\Vert&=\left( \sum _{j=1}^N \left\| \sum _{m=k-5}^{k} c_{j,m}^1 L_{j,m}\right\| ^2_{I_j} \right) ^{\frac{1}{2}} \\&\lesssim \left( \sum _{j=1}^N\sum _{m=k-5}^k h\left( c_{j,m}^1\right) ^2\right) ^{\frac{1}{2}} \\&\lesssim h^{k+4}. \end{aligned} \end{aligned}$$

Similarly, we have the estimate for \(\omega _v^{(1)}\). And we take the time derivate on both sides of (11) and (12), we can obtain the estimates for \(\partial _t^n\omega _u^{(1)}\) and \(\partial _t^n\omega _v^{(1)}\). We can prove (14) for all \(1\leqslant i\leqslant l\) by the recursion formula.

Proof of Lemma 3

Integrating (20) by part, we have

$$\begin{aligned} (f,\varphi )_j-\left( \xi _{xxx},\varphi \right) _j-\llbracket \xi _{xx}\rrbracket \varphi ^+\vert _{j-\frac{1}{2}}+\llbracket \xi _{x}\rrbracket \varphi _x^+\vert _{j-\frac{1}{2}}-\llbracket \xi \rrbracket \varphi _{xx}^+\vert _{j-\frac{1}{2}}=0. \end{aligned}$$
(B1)

First, we take

$$\begin{aligned} \varphi (x)\vert _{I_j}=\xi _{xxx}+aL_k(\theta )+bL_{k-1}(\theta )+cL_{k-2}(\theta ), \end{aligned}$$

where \(L_k\) is the standard Legendre polynomial with degree k, \(\theta =\frac{2}{h_j}\left( x-x_{j}\right) \) with \(x_j=\frac{x_{j-\frac{1}{2}}+x_{j+\frac{1}{2}}}{2}\), and \(a,\,b,\) and c are the solutions of the equations:

$$\begin{aligned} \left\{ \begin{aligned}&aL_k(-1)+bL_{k-1}(-1)+cL_{k-2}(-1)+\xi _{xxx}\left( x_{j-\frac{1}{2}}^+\right) =0, \\&aL^\prime _k(-1)+bL^\prime _{k-1}(-1)+cL^\prime _{k-2}(-1)+\frac{h_j}{2}\xi _{xxxx}\left( x_{j-\frac{1}{2}}^+\right) =0, \\&aL^{\prime \prime }_k(-1)+bL^{\prime \prime }_{k-1}(-1)+cL^{\prime \prime }_{k-2}(-1)+\frac{h_j^2}{4}\xi _{xxx}\left( x_{j-\frac{1}{2}}^+\right) =0. \end{aligned} \right. \end{aligned}$$
(B2)

That is,

$$\begin{aligned} \left\{ \begin{aligned} a&=\frac{(-1)^k(k-2)(k-1)^2}{4(2k-1)}\xi _{xxx}\left( x_{j-\frac{1}{2}}^+\right) +\frac{(-1)^k(k-2)}{2k-1}\frac{h_j}{2}\xi _{xxxx}\left( x_{j-\frac{1}{2}}^+\right) \\&\qquad -\frac{2(-1)^k}{k(k-2)}\frac{h_j^2}{4}\xi _{xxxxx}\left( x_{j-\frac{1}{2}}^+\right) , \\ b&=\frac{(-1)^k(k-2)(k+1)}{4}\xi _{xxx}\left( x_{j-\frac{1}{2}}^+\right) +(-1)^k\frac{h_j}{2}\xi _{xxxx}\left( x_{j-\frac{1}{2}}^+\right) \\&\qquad -\frac{2(-1)^k}{k(k-1)}\frac{h_j^2}{4}\xi _{xxxxx}\left( x_{j-\frac{1}{2}}^+\right) , \\ c&=\frac{(-1)^k k^2(k+1)}{4(2k-1)}\xi _{xxx}\left( x_{j-\frac{1}{2}}^+\right) +\frac{(-1)^k(k+1)}{2k-1}\frac{h_j}{2}\xi _{xxxx}\left( x_{j-\frac{1}{2}}^+\right) \\&\qquad -\frac{2(-1)^k}{(2k-1)(k-1)}\frac{h_j^2}{4}\xi _{xxxxx}\left( x_{j-\frac{1}{2}}^+\right) . \end{aligned} \right. \end{aligned}$$

By the inverse inequality, we have

$$\begin{aligned} \vert a\vert ,\ \vert b\vert ,\ \vert c\vert \lesssim h^{-\frac{1}{2}}\Vert \xi _{xxx}\Vert _{I_j}. \end{aligned}$$

Clearly, there holds \(\varphi \left( x_{j-\frac{1}{2}}^+\right) =0\), \(\varphi _x\left( x_{j-\frac{1}{2}}^+\right) =0\), and \(\varphi _{xx}\left( x_{j-\frac{1}{2}}^+\right) =0\). So, by (B1) we have

$$\begin{aligned} \begin{aligned} \Vert \xi _{xxx}\Vert _{I_j}^2&=(f,\varphi )_j \\&\leqslant \Vert f\Vert _{I_j}\left( \Vert \xi _{xxx}\Vert _{I_j}+\vert a\vert \Vert L_k(\theta )\Vert _{ I_j}+\vert b\vert \Vert L_{k-1}(\theta )\Vert _{I_j}+\vert c\vert \Vert L_{k-2}(\theta )\Vert _{I_j}\right) \\&\leqslant C\Vert f\Vert _{I_j}\Vert \xi _{xxx}\Vert _{I_j}, \end{aligned} \end{aligned}$$

thus

$$\begin{aligned} \Vert \xi _{xxx}\Vert _{I_j}\lesssim \Vert f\Vert _{I_j}. \end{aligned}$$

Next, we take \(\varphi =1\) in (B1) to obtain

$$\begin{aligned} (f,1)_j-(\xi _{xxx},1)_j-\llbracket \xi _{xx}\rrbracket \vert _{j-\frac{1}{2}}=0, \end{aligned}$$

thus

$$\begin{aligned} \begin{aligned} \vert \llbracket \xi _{xx}\rrbracket _{j-\frac{1}{2}}\vert&\leqslant h^{\frac{1}{2}}(\Vert f\Vert _{I_j}+\Vert \xi _{xxx}\Vert _{I_j}) \\&\lesssim h^{\frac{1}{2}}\Vert f\Vert _{I_j}. \end{aligned} \end{aligned}$$

Next, we take \(\varphi =\frac{2(x-x_j)}{h_j}\) in (B1) to obtain

$$\begin{aligned} (f,\varphi )_j-(\xi _{xxx},\varphi )_j-\llbracket \xi _{xx}\rrbracket \vert _{j-\frac{1}{2}}+\frac{2}{h_j}\llbracket \xi _{x}\rrbracket \vert _{j-\frac{1}{2}}=0, \end{aligned}$$

thus

$$\begin{aligned} \begin{aligned} \vert \llbracket \xi _{x}\rrbracket _{j-\frac{1}{2}}\vert&\leqslant \frac{h_j}{2}\Vert \varphi \Vert _{I_j}(\Vert f\Vert _{ I_j}+\Vert \xi _{xxx}\Vert _{I_j})+\frac{h_j}{2}\vert \llbracket \xi _{xx}\rrbracket _{j-\frac{1}{2}}\vert \\&\lesssim h^{\frac{3}{2}}\Vert f\Vert . \end{aligned} \end{aligned}$$

Finally, we take \(\varphi =\left( \frac{2(x-x_j)}{h_j}\right) ^2\) in (B1) to obtain

$$\begin{aligned} (f,\varphi )_j-(\xi _{xxx},\varphi )_j-\llbracket \xi _{xx}\rrbracket \vert _{j-\frac{1}{2}}+\frac{4}{h_j}\llbracket \xi _{x}\rrbracket \vert _{j-\frac{1}{2}}-\frac{8}{h^2_j}\llbracket \xi \rrbracket \vert _{j-\frac{1}{2}}=0, \end{aligned}$$

thus

$$\begin{aligned} \begin{aligned} \vert \llbracket \xi \rrbracket _{j-\frac{1}{2}}\vert&\leqslant \frac{h^2_j}{8}\Vert \varphi \Vert _{I_j}(\Vert f\Vert _{I_j}+\Vert \xi _{xxx}\Vert _{I_j})+\frac{h^2_j}{8}\vert \llbracket \xi _{xx}\rrbracket _{j-\frac{1}{2}}\vert +\frac{h_j}{2}\vert \llbracket \xi _{x}\rrbracket _{j-\frac{1}{2}}\vert \\&\lesssim h^{\frac{5}{2}}\Vert f\Vert . \end{aligned} \end{aligned}$$

This finishes our proof.

Proof of Lemma 4

Since \(f_1\perp \mathcal {P}^0\), so we can define \(D^{-1}f_1(x)=\overline{h_j}\int _{x_{j-\frac{1}{2}}}^x f_1(t)\ \textrm{d}t,\,x\in I_j\), where \(\overline{h_j}=\frac{h_j}{2}\). It’s easy to check that \(D^{-1}f_1\left( x_{j\pm \frac{1}{2}}^{\mp }\right) =0\) and \(\Vert D^{-1} f_1\Vert _{I_j}\lesssim \Vert f_1\Vert _{I_j}\). Thus, we have \((f_1,\varphi )_j=-(\overline{h_j}D^{-1}f_1,\varphi _x)_j\).

Integrating the left-hand side of (22) by parts twice, we have

$$\begin{aligned} A_j(\xi ,\varphi )=(\xi _{xx},\varphi _x)_j-\llbracket \xi \rrbracket \varphi _{xx}^+\vert _{j-\frac{1}{2}}+\llbracket \xi _x\rrbracket \varphi _{x}^+\vert _{j-\frac{1}{2}}-\xi _{xx}^-\varphi ^-\vert _{j+\frac{1}{2}}+\xi _{xx}^-\varphi ^+\vert _{j-\frac{1}{2}}. \end{aligned}$$

Taking \(\varphi =\xi _x\) and summing over j, we have

$$\begin{aligned}{} & {} \Vert \xi _{xx}\Vert ^2-\sum _{j=1}^N \llbracket \xi \rrbracket \xi _{xxx}^+\vert _{j-\frac{1}{2}}+\sum _{j=1}^N \llbracket \xi _x\rrbracket \xi _{xx}^+\vert _{j-\frac{1}{2}}+\sum _{j=1}^N \llbracket \xi _x\rrbracket \xi _{xx}^-\vert _{j-\frac{1}{2}}\\ ={} & {} \sum _{j=1}^N-(\overline{h_j}D^{-1}f_1,\xi _{xx})_j+(f_2,\xi _x)_j, \end{aligned}$$

thus

$$\begin{aligned} \Vert \xi _{xx}\Vert ^2{} & {} \leqslant h^{-\frac{1}{2}}\Vert \xi _{xxx}\Vert \left( \sum _{j=1}^N\llbracket \xi \rrbracket _{j+\frac{1}{2}}^2\right) ^{\frac{1}{2}}+h^{-\frac{1}{2}}\Vert \xi _{xx}\Vert \left( \sum _{j=1}^N\llbracket \xi _x\rrbracket _{j+\frac{1}{2}}^2\right) ^{\frac{1}{2}}\\{} & {} \quad +\,\,h\Vert f_1\Vert \Vert \xi _{xx}\Vert +\Vert f_2\Vert \Vert \xi _x\Vert . \end{aligned}$$

By Lemma 3, we have \(\Vert \xi _{xxx}\Vert \lesssim \Vert f_1\Vert +\Vert f_2\Vert \), \(h^{-\frac{1}{2}}\left( \sum _{j=1}^N\llbracket \xi \rrbracket _{j+\frac{1}{2}}^2\right) ^{\frac{1}{2}}\lesssim h^2(\Vert f_1\Vert +\Vert f_2\Vert )\), \(h^{-\frac{1}{2}}\left( \sum _{j=1}^N\llbracket \xi _x\rrbracket _{j+\frac{1}{2}}^2\right) ^{\frac{1}{2}}\lesssim h(\Vert f_1\Vert +\Vert f_2\Vert )\), and by the discrete Poincaré inequalities, we also have

$$\begin{aligned} \Vert \xi _x\Vert \lesssim \Vert \xi _{xx}\Vert +h^{-\frac{1}{2}}\left( \sum _{j=1}^N\llbracket \xi _x\rrbracket _{j+\frac{1}{2}}^2\right) ^{\frac{1}{2}}+h^{-\frac{1}{2}}\left( \sum _{j=1}^N\llbracket \xi \rrbracket _{j+\frac{1}{2}}^2\right) ^{\frac{1}{2}}. \end{aligned}$$
(C1)

Thus,

$$\begin{aligned} \Vert \xi _{xx}\Vert ^2\lesssim h^2(\Vert f_1\Vert +\Vert f_2\Vert )+h(\Vert f_1\Vert +\Vert f_2\Vert )\Vert \xi _{xx}\Vert +\Vert f_2\Vert \Vert \xi _{xx}\Vert +h\Vert f_2\Vert (\Vert f_1\Vert +\Vert f_2\Vert ), \end{aligned}$$

thus

$$\begin{aligned} \Vert \xi _{xx}\Vert \lesssim h\Vert f_1\Vert +\Vert f_2\Vert . \end{aligned}$$

And, by (C1), we have

$$\begin{aligned} \Vert \xi _{x}\Vert \lesssim h\Vert f_1\Vert +\Vert f_2\Vert . \end{aligned}$$

Proof of Lemma 5

For \(u\in L^2(I_j)\), we can have the Legendre expansion

$$\begin{aligned} u(x)=\sum _{m=0}^{\infty } u_{j,m}L_{j,m}(x). \end{aligned}$$
(D1)

In [10], the following expression of \(u_{j,m}\) was given:

$$\begin{aligned} u_{j,m}=\frac{(-1)^l(2m+1)}{2^{m+1}m!}\int _{-1}^1\frac{\textrm{d}^l}{\textrm{d}\theta ^l}\hat{u}_j(\theta )\frac{\textrm{d}^{m-l}}{\textrm{d}\theta ^{m-l}}(\theta ^2-1)^m \textrm{d}\theta , \end{aligned}$$

where \(\theta =\frac{2}{h_j}(x-x_j)\) as in the proof of Lemma 3, and \(\hat{u}(\theta )=u(x(\theta ))\). If \(u\in W^{l,\infty }(I_j)\), we have

$$\begin{aligned} \vert u_{j,m}\vert \leqslant Ch^l\vert u\vert _{W^{l,\infty }(I_j)}, \ \forall l, 0\leqslant l\leqslant m. \end{aligned}$$
(D2)

As to \(P_h^+ u\), we can also express it in the Legendre basis:

$$\begin{aligned} P_h^+ u=\sum _{m=0}^k \tilde{u}_{j,m}L_{j,m}(x), \end{aligned}$$
(D3)

we can easily deduce from the definition of \(P_h^+\) (9) that

$$\begin{aligned} \tilde{u}_{j,m}=u_{j,m},\ \forall m \leqslant k-3. \end{aligned}$$

Substituting (D1) and (D3) into (10), we have

$$\begin{aligned} \mathcal {M}_j \left( \begin{aligned} u_{j,k-2}&-\tilde{u}_{j,k-2}\\ u_{j,k-1}&-\tilde{u}_{j,k-1}\\ u_{j,k}&-\tilde{u}_{j,k} \end{aligned} \right) =\sum _{m=k+1}^{\infty } u_{j,m} \left( \begin{aligned}&L_{j,m}\left( x_{j-\frac{1}{2}}\right) \\ \frac{2}{h_j}&\frac{\textrm{d}}{\textrm{d}x}L_{j,m}\left( x_{j-\frac{1}{2}}\right) \\ \left( \frac{2}{h_j}\right) ^2&\frac{\textrm{d}^2}{\textrm{d}x^2}L_{j,m}\left( x_{j-\frac{1}{2}}\right) \end{aligned} \right) , \end{aligned}$$
(D4)

where

$$\begin{aligned} \mathcal {M}_j= \begin{pmatrix} L_{j,k-2}\left( x_{j-\frac{1}{2}}\right) &{} L_{j,k-1}\left( x_{j-\frac{1}{2}}\right) &{} L_{j,k}\left( x_{j-\frac{1}{2}}\right) \\ \frac{2}{h_j}\frac{\textrm{d}}{\textrm{d}x}L_{j,k-2}\left( x_{j-\frac{1}{2}}\right) &{} \frac{2}{h_j}\frac{\textrm{d}}{\textrm{d}x}L_{j,k-1}\left( x_{j-\frac{1}{2}}\right) &{} \frac{2}{h_j}\frac{\textrm{d}}{\textrm{d}x}L_{j,k}\left( x_{j-\frac{1}{2}}\right) \\ \left( \frac{2}{h_j}\right) ^2\frac{\textrm{d}^2}{\textrm{d}x^2}L_{j,k-2}\left( x_{j-\frac{1}{2}}\right) &{} \left( \frac{2}{h_j}\right) ^2\frac{\textrm{d}^2}{\textrm{d}x^2}L_{j,k-1}\left( x_{j-\frac{1}{2}}\right) &{} \left( \frac{2}{h_j}\right) ^2\frac{\textrm{d}^2}{\textrm{d}x^2}L_{j,k}\left( x_{j-\frac{1}{2}}\right) \end{pmatrix}. \end{aligned}$$

With further calculations, we know that \(\mathcal {M}_j\) is independent of h and is identical for all j, so we drop the subscript j and denote it by \(\mathcal {M}\). The reversibility of \(\mathcal {M}\) enables us to rewrite (D4) into

$$\begin{aligned} \left( \begin{aligned} u_{j,k-2}&-\tilde{u}_{j,k-2}\\ u_{j,k-1}&-\tilde{u}_{j,k-1}\\ u_{j,k}&-\tilde{u}_{j,k} \end{aligned} \right) =\sum _{m=k+1}^{\infty } u_{j,m} \mathcal {M}^{-1}\left( \begin{aligned}&L_{j,m}\left( x_{j-\frac{1}{2}}\right) \\ \frac{2}{h_j}&\frac{\textrm{d}}{\textrm{d}x}L_{j,m}\left( x_{j-\frac{1}{2}}\right) \\ \left( \frac{2}{h_j}\right) ^2&\frac{\textrm{d}^2}{\textrm{d}x^2}L_{j,m}\left( x_{j-\frac{1}{2}}\right) \end{aligned} \right) . \end{aligned}$$

Then on \(I_j\), we have

$$\begin{aligned} \begin{aligned} u-P_h^+u&=\sum _{m=k-2}^k (u_{j,m}-\tilde{u}_{j,m})L_{j,m}+\sum _{m=k+1}^{\infty }u_{j,m}L_{j,m}\\&=\sum _{m=k+1}^{\infty } u_{j,m} R_{j,m}, \end{aligned} \end{aligned}$$
(D5)

where

$$\begin{aligned} R_{j,m}=L_{j,m}+(L_{j,k-2},L_{j,k-1},L_{j,k})\mathcal {M}^{-1}\left( \begin{aligned}&L_{j,m}\left( x_{j-\frac{1}{2}}\right) \\ \frac{2}{h_j}&\frac{\textrm{d}}{\textrm{d}x}L_{j,m}\left( x_{j-\frac{1}{2}}\right) \\ \left( \frac{2}{h_j}\right) ^2&\frac{\textrm{d}^2}{\textrm{d}x^2}L_{j,m}\left( x_{j-\frac{1}{2}}\right) \end{aligned} \right) . \end{aligned}$$

Taking \(u=L_{j,k+1}\) in (D5), we can see that \(R_{j,k+1}\) we define here is identical with the one in (31). Therefore, from (D2), we have for \(x\in D^s_j\),

$$\begin{aligned} \frac{\partial ^s}{\partial x^s}(u-P^+_h)(x)=\sum _{m=k+2}^{\infty } u_{j,m}\frac{\textrm{d}^s}{\textrm{d}x^s}R_{j,m}\leqslant Ch^{k+2-s}\vert u\vert _{W^{k+2,\infty }(I_j)}. \end{aligned}$$

Discrete Poincaré Inequality

Let

$$\begin{aligned} H^1(\Omega ,\mathcal {T})=\{u\in L^2(\Omega )\!: u\vert _{I_j}\in H^1(I_j),\; \forall j \in Z_N \} \end{aligned}$$

be the piecewise \(H^1\) functions on \(\mathcal {T}\). We have the following discrete Poincaré inequality.

Lemma E1

Suppose \(u\in H^1(\Omega ,\mathcal {T})\), and u is a periodic function with a period of \(2\uppi \). Then, we have

$$\begin{aligned} \Vert u \Vert \lesssim \Vert u_x \Vert +h^{-\frac{1}{2}} \left( \sum _{j=1}^N \llbracket u\rrbracket _{j+\frac{1}{2}}^2\right) ^{\frac{1}{2}}+\left| \int _{\Omega } u \ \textrm{d}x \right| . \end{aligned}$$

Proof

Let \(V=\{ u\in L^2(\Omega )\!:\ u\vert _{I_j} \in \mathcal {P}^1(I_j)\ \textrm{and} \ u \ \mathrm {is \ continue}\} \), we introduce an interpolation operator \(\mathcal {I}\): \(H^1(\Omega ,\mathcal {T}) \rightarrow V\)

$$\begin{aligned} \mathcal {I}u\left( x_{j+\frac{1}{2}}\right) =\frac{1}{2}\left( u^+\left( x_{j+\frac{1}{2}}\right) +u^-\left( x_{j+\frac{1}{2}}\right) \right) ,\; \forall j\in Z_N. \end{aligned}$$
(E1)

Let \(\uppi _{I_j}\!:\!H^1(I_j)\rightarrow \mathcal {P}^1(I_j)\) be the local interpolation operator defined by

$$\begin{aligned} \uppi _{I_j}u\left( x_{j\pm \frac{1}{2}}\right) =u\left( x_{j\pm \frac{1}{2}}\right) . \end{aligned}$$
(E2)

We have the following well-known estimates:

$$\begin{aligned} \Vert u-\uppi _{I_j}u \Vert _{I_j}^2+h_j^2 \Vert (\uppi _{I_j}u)_x \Vert _{I_j}^2 \lesssim h_j^2 \Vert u_x \Vert _{I_j}^2. \end{aligned}$$
(E3)

From (E1) and (E2), we have on \(I_j\)

$$\begin{aligned} (\mathcal {I}u-\uppi _{I_j}u)\left( x_{j\pm \frac{1}{2}}\right) =\pm \llbracket u\rrbracket _{j\pm \frac{1}{2}}. \end{aligned}$$

It is easy to check that

$$\begin{aligned} \begin{aligned}&\Vert \mathcal {I}u-\uppi _{I_j}u \Vert _{I_j}^2 \lesssim h_j\left( \llbracket u\rrbracket _{j+\frac{1}{2}}^2+\llbracket u\rrbracket _{j-\frac{1}{2}}^2\right) , \\&\Vert (\mathcal {I}u-\uppi _{I_j}u)_x \Vert _{I_j}^2 \lesssim h_j^{-1}\left( \llbracket u\rrbracket _{j+\frac{1}{2}}^2+\llbracket u\rrbracket _{j-\frac{1}{2}}^2\right) . \end{aligned} \end{aligned}$$

Along with (E3), we have

$$\begin{aligned} \left\{ \begin{array}{l} \Vert u-\mathcal {I}u \Vert ^2 \lesssim h^2\Vert u_x \Vert ^2+h \sum _{j=1}^N \llbracket u\rrbracket _{j+\frac{1}{2}}^2, \\ \Vert (\mathcal {I}u)_x \Vert ^2 \lesssim \Vert u_x \Vert ^2+h^{-1} \sum _{j=1}^N \llbracket u\rrbracket _{j+\frac{1}{2}}^2. \end{array}\right. \end{aligned}$$
(E4)

Since \(\mathcal {I}u\in H^1(\Omega )\), we can use the usual Poincaré inequality. Thus,

$$\begin{aligned} \begin{aligned} \Vert \mathcal {I}u \Vert ^2&\lesssim \Vert (\mathcal {I}u)_x \Vert ^2+\left| \int _{\Omega } \mathcal {I}u \ \textrm{d}x \right| ^2 \\&\lesssim \Vert (\mathcal {I}u)_x \Vert ^2+\left| \int _{\Omega } u \ \textrm{d}x \right| ^2+\left| \int _{\Omega } u-\mathcal {I}u \ \textrm{d}x \right| ^2 \\&\lesssim \Vert (\mathcal {I}u)_x \Vert ^2+\left| \int _{\Omega } u \ \textrm{d}x \right| ^2+\Vert u-\mathcal {I}u \Vert ^2. \end{aligned} \end{aligned}$$
(E5)

From (E4) and (E5), we have

$$\begin{aligned} \begin{aligned} \Vert u \Vert ^2&\lesssim \Vert u-\mathcal {I}u \Vert ^2+\Vert \mathcal {I}u \Vert ^2\\&\lesssim \Vert u_x \Vert ^2+h^{-1} \sum _{j=1}^N \llbracket u\rrbracket _{j+\frac{1}{2}}^2+\left| \int _{\Omega } u \ \textrm{d}x \right| ^2. \end{aligned} \end{aligned}$$
(E6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xu, Y. Superconvergence of UWLDG Method for One-Dimensional Linear Sixth-Order Equations. Commun. Appl. Math. Comput. (2024). https://doi.org/10.1007/s42967-024-00390-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-024-00390-1

Keywords

Mathematics subject classification

Navigation