Skip to main content
Log in

Robust Falk-Neilan Finite Elements for the Reissner-Mindlin Plate

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

The family of Falk-Neilan \(P_k\) finite elements, combined with the Argyris \(P_{k+1}\) finite elements, solves the Reissner-Mindlin plate equation quasi-optimally and locking-free, on triangular meshes. The method is truly conforming or consistent in the sense that no projection/reduction is introduced. Theoretical proof and numerical confirmation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnold, D., Brezzi, F., Falk, R., Marini, D.: Locking-free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Engrg. 96, 3660–3671 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D., Brezzi, F., Marini, D.: A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate. J. Sci. Comput. 22, 25–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D., Falk, R.: A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1276–1290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bathe, K.-J., Brezzi, F.: On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. In: The Mathematics of Finite Elements and Applications. V (Uxbridge, 1984), pp. 491–503. Academic Press, London (1985)

    Chapter  Google Scholar 

  5. Bathe, K.-J., Brezzi, F.: A simplified analysis of two plate bending elements the MITC4 and MITC9 elements. In: Numerical Techniques for Engineering Analysis and Design, vol. 1. Martinus Nijhoff, Amsterdam (1987)

    Google Scholar 

  6. Bathe, K.-J., Brezzi, F., Cho, S.W.: The MITC7 and MITC9 plate bending elements. Comput. Struct. 32, 797–841 (1989)

    Article  MATH  Google Scholar 

  7. Bathe, K.-J., Dvorkin, E.N.: A four-node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation. Int. J. Numer. Methods Eng. 21, 367–383 (1985)

    Article  MATH  Google Scholar 

  8. Bathe, K.-J., Dvorkin, E.N.: A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 22, 697–722 (1986)

    Article  MATH  Google Scholar 

  9. Beirao da Veiga, L., Buffa, A., Lovadina, C., Martinelli, M., Sangalli, G.: An isogeometric method for the Reissner-Mindlin plate bending problem. Comput. Methods Appl. Mech. Engrg. 209/212, 45–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernardi, C., Girault, V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35(5), 1893–1916 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezzi, F., Bathe, K., Fortin, M.: Mixed interpolated elements for Reissner-Mindlin plates. Int. J. Numer. Methods Eng. 28, 1787–1801 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezzi, F., Fortin, M.: Numerical approximation of Mindlin-Reissner plates. Math. Comp. 47(175), 151–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, vol. 15. In: Springer Series in Computational Mathematics. Springer-Verlag, New York (1991)

    MATH  Google Scholar 

  14. Brezzi, F., Fortin, M., Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 1(2), 125–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chapelle, D., Stenberg, R.: An optimal low-order locking-free finite element method for Reissner-Mindlin plates. Math. Models. Methods Appl. Sci. 8, 407–430 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clément, P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9(R2), 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  17. Durán, R., Hernández, E., Hervella-Nieto, L., Liberman, E., Rodríguez, R.: Error estimates for low-order isoparametric quadrilateral finite elements for plates. SIAM J. Numer. Anal. 41, 1751–1772 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Durán, R., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J.: Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Math. Comp. 68(228), 1447–1463 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Durán, R., Liberman, E.: On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp. 58(198), 561–573 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Durán, R., Liberman, E.: On the convergence of a triangular mixed finite element method for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 6, 339–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Falk, R., Tu, T.: Locking-free finite elements for the Reissner-Mindlin plate. Math. Comp. 69(231), 911–928 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Girault, V., Scott, L.R.: Hermite interpolation of nonsmooth functions preserving boundary conditions. Math. Comp. 71(239), 1043–1074 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansbo, P., Heintz, D., Larson, M.: A finite element method with discontinuous rotations for the Mindlin-Reissner plate model. Comput. Methods Appl. Mech. Engrg. 200, 638–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hughes, T.J.R., Tezuyar, T.E.: Finite elements based upon Mindlin plate theory with particular reference to the four node blinear isoparamtric element. J. Appl. Mech. Eng. 48, 587–598 (1981)

    Article  Google Scholar 

  25. Lai, M.-J., Schumaker, L.L.: Spline functions on triangulations. In: Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  26. Lovadina, C., Marini, D.: Nonconforming locking-free finite elements for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Engrg. 195, 3448–3460 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Perugia, I., Scapolla, T.: Optimal rectangular MITC finite elements for Reissner-Mindlin plates. Numer. Methods Partial Differential Equations 13(5), 575–585 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Scott, L.R., Zhang, S.: Higher-dimensional nonnested multigrid methods. Math. Comp. 58(198), 457–466 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stenberg, R., Suri, M.: An hp error analysis of MITC plate elements. SIAM J. Numer. Anal. 34, 544–568 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, X.: A rectangular element for the Reissner-Mindlin plate. Numer. Methods Partial Differential Equations 16(2), 184–193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ye, X., Zhang, S., Zhang, Z.: A locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes. Comput. Math. Appl. 80(5), 906–916 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, S.: A family of \(Q_{k+1, k}\times Q_{k, k+1}\) divergence-free finite elements on rectangular grids. SIAM J. Num. Anal. 47, 2090–2107 (2009)

    Article  MATH  Google Scholar 

  33. Zhang, S.: On the full \(C_1\)-\(Q_k\) finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech. 2, 701–721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangyou Zhang.

Ethics declarations

Conflict of Interest

There is no potential competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S. Robust Falk-Neilan Finite Elements for the Reissner-Mindlin Plate. Commun. Appl. Math. Comput. 5, 1697–1712 (2023). https://doi.org/10.1007/s42967-023-00266-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-023-00266-w

Keywords

Mathematics Subject Classification

Navigation