Skip to main content
Log in

Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper discusses the generalization of the strain-split method (SSM) for the locking alleviation of curved structures. The generalization is achieved by using proper definitions of the stress and strain tensors along the curved-coordinate lines using the matrix of position vector gradients in the reference configuration. This matrix, which accurately captures the element geometry at the integration points, allows using consistent gradient transformation in the calculation of the stress and strain tensors. The generalized SSM implementation is used to verify the results and evaluate the performance of the absolute nodal coordinate formulation (ANCF) finite elements (FE). The focus of this study is on the Poisson locking that characterizes fully parameterized ANCF elements that employ different orders of interpolation in different directions. ANCF beam and plate nonlinear problems are presented, and the obtained simulation results are compared with analytical solutions as well as results obtained using commercial FE computer programs. These results are also compared with the results obtained using ANCF beam and curved plate elements in the case of nonzero Poisson ratio in order to demonstrate the SSM effectiveness in alleviating the Poisson locking. It is shown that a much smaller number of ANCF plate elements is required to achieve approximately 0.9% difference from the results of commercial FE computer programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergan, P.G., Nygard, M.K.: Finite elements with increased freedom in choosing shape functions. Int. J. Numer. Methods Eng. 20(4), 643–663 (1984)

    Article  Google Scholar 

  2. Choi, J., Lim, J.: General curved beam elements based on the assumed strain fields. Comput. Struct. 55(3), 379–386 (1995)

    Article  Google Scholar 

  3. Dorfi, H.R., Busby, H.R.: An effective curved composite beam finite element based on the hybrid-mixed formulation. Comput. Struct. 53(1), 43–52 (1994)

    Article  Google Scholar 

  4. Kim, J.G., Kim, Y.Y.: A new higher-order hybrid-mixed curved beam element. Int. J. Numer. Methods Eng. 43(5), 925–940 (1998)

    Article  Google Scholar 

  5. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  6. Ogden, R.W.: Nonlinear Elastic Deformations. Dover Publications, New York (1984)

    MATH  Google Scholar 

  7. Shabana, A.A.: Computational Continuum Mechanics, 3rd edn. Wiley, Chichester (2018)

    Book  Google Scholar 

  8. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229, 2923–2946 (2018)

    Article  MathSciNet  Google Scholar 

  9. Zheng, Y., Shabana, A.A., Zhang, D.: Curvature expressions for the large displacement analysis of planar beam motions. ASME J. Comput. Nonlinear Dyn. 13, 011013-1–011013-12 (2018)

    Google Scholar 

  10. Andelfinger, U., Ramm, E.: EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Methods Eng. 36(8), 1311–1337 (1993)

    Article  Google Scholar 

  11. Armero, F.: On the locking and stability of finite elements in finite deformation plane strain problems. Comput. Struct. 75(3), 261–290 (2000)

    Article  Google Scholar 

  12. Babuska, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62(1), 439–463 (1992)

    Article  MathSciNet  Google Scholar 

  13. Babuska, I., Suri, M.: On locking and robustness in the finite element method. SIAM J. Numer. Anal. 29(5), 1261–1293 (1992)

    Article  MathSciNet  Google Scholar 

  14. Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N., Ong, J.S.J.: Stress projection for membrane and shear locking in shell finite elements. Comput. Methods Appl. Mech. Eng. 51(1–3), 221–258 (1985)

    Article  MathSciNet  Google Scholar 

  15. Carpenter, N., Belytschko, T., Stolarski, H.: Locking and shear scaling factors in \(C^{0}\) bending elements. Comput. Struct. 22(1), 39–52 (1986)

    Article  Google Scholar 

  16. Hughes, T.J.R., Cohen, M., Haroun, M.: Reduced and selective integration techniques in the finite element analysis of plates. Nucl. Eng. Des. 46(1), 203–222 (1978)

    Article  Google Scholar 

  17. Lee, P., Sin, H.: Locking-free curved beam element based on curvature. Int. J. Numer. Methods Eng. 37(6), 989–1007 (1994)

    Article  Google Scholar 

  18. Noor, A., Peters, J.: Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams. Int. J. Numer. Methods Eng. 17(4), 615–631 (1981)

    Article  Google Scholar 

  19. Prathap, G., Bhashyam, G.R.: Reduced integration and the shear-flexible beam element. Int. J. Numer. Methods Eng. 18(2), 195–210 (1982)

    Article  Google Scholar 

  20. Rakowski, J.: The interpretation of the shear locking in beam elements. Comput. Struct. 37(5), 769–776 (1990)

    Article  Google Scholar 

  21. Raveendranath, P., Singh, G., Pradhan, B.: A two-noded locking-free shear flexible curved beam element. Int. J. Numer. Methods Eng. 44(2), 265–280 (1999)

    Article  Google Scholar 

  22. Reddy, J.N.: On locking-free shear deformable beam finite elements. Comput. Methods Appl. Mech. Eng. 149(1–4), 113–132 (1997)

    Article  Google Scholar 

  23. Schwarze, M., Reese, S.: A reduced integration solid-shell finite element based on the EAS and ANS concept—geometrically linear problems. Int. J. Numer. Methods Eng. 80(10), 1322–1355 (2009)

    Article  MathSciNet  Google Scholar 

  24. Simo, J.C., Armero, F.: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 33(7), 1413–1449 (1992)

    Article  Google Scholar 

  25. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29(8), 1595–1638 (1990)

    Article  MathSciNet  Google Scholar 

  26. Simo, J.C., Armero, F., Taylor, R.L.: Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput. Methods Appl. Mech. Eng. 110(3–4), 359–386 (1993)

    Article  Google Scholar 

  27. Stolarski, H., Belytschko, T.: Shear and membrane locking in curved \(C^{0}\) elements. Comput. Methods Appl. Mech. Eng. 41(3), 279–296 (1983)

    Article  Google Scholar 

  28. Wriggers, P., Reese, S.: A note on enhanced strain methods for large deformations. Comput. Methods Appl. Mech. Eng. 135(3–4), 201–209 (1996)

    Article  Google Scholar 

  29. Yunhua, L.: Explanation and elimination of shear locking and membrane locking with field consistence approach. Comput. Methods Appl. Mech. Eng. 162(1–4), 249–269 (1998)

    Article  Google Scholar 

  30. Zienkiewicz, O.C., Owen, D.R.J., Lee, K.N.: Least square-finite element for elasto-static problems. Use of ‘reduced’ integration. Int. J. Numer. Methods Eng. 8(2), 341–358 (1974)

    Article  Google Scholar 

  31. Zienkiewicz, O.C., Taylor, R., Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3(2), 275–290 (1971)

    Article  Google Scholar 

  32. Shabana, A.A.: Definition of ANCF finite elements. ASME J. Comput. Nonlinear Dyn. 10, 054506-1–054506-5 (2015)

    Google Scholar 

  33. Nachbagauer, K., Gruber, P., Gerstmayr, J., (2013) A 3D shear deformable finite element based on absolute nodal coordinate formulation. In: Multibody Dynamics: Computational Methods in Applied Sciences, vol. 28, pp. 77–96. Springer, Amsterdam

  34. Yamashita, H., Jayakumar, P., Sugiyama, H.: Physics-based flexible tire model integrated with LuGre tire friction for transient braking and cornering analysis. ASME J. Comput. Nonlinear Dyn. 11(3), 031017 (2016). https://doi.org/10.1115/1.4032855

    Article  Google Scholar 

  35. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20(1), 51–68 (2008)

    Article  MathSciNet  Google Scholar 

  36. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementations and applications. ASME J. Mech. Des. 123(4), 614–621 (2000)

    Article  Google Scholar 

  37. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9(3), 283–309 (2003)

    Article  MathSciNet  Google Scholar 

  38. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 219(4), 345–355 (2005)

    Google Scholar 

  39. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  40. Mechanical, A.P.D.L.: Theory Reference. ANSYS release 16.2 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Shabana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Fully parameterized three-dimensional ANCF beam element

The fully parameterized three-dimensional ANCF beam element, proposed in [36], is a 2-node element with 24 degrees of freedom. The nodal coordinates \(\mathbf{e}^{jk}\) at node k of the finite element j are defined as

$$\begin{aligned} \mathbf{e}^{jk}=\left[ {\mathbf{r}^{jk^{\mathrm{T}}} \;\mathbf{r}_x^{jk^{\mathrm{T}}} \;\mathbf{r}_y^{jk^{\mathrm{T}}} \;\mathbf{r}_z^{jk^{\mathrm{T}}} } \right] ^{\mathrm{T}} \qquad k=1,2, \end{aligned}$$
(A.1)

where \(\mathbf{r}^{jk}\) is the absolute position vector at the node k of the element j and \(\mathbf{r}_x^{jk} \), \(\mathbf{r}_y^{jk} \), and \(\mathbf{r}_z^{jk} \) are the position vector gradients obtained by differentiation with respect to the spatial coordinates x, y, and z, respectively. The shape function matrix can be written as \(\mathbf{S}=\left[ {s_1 \mathbf{I}\hbox { }s_2 \mathbf{I}\hbox { }s_3 \mathbf{I}\hbox { }s_4 \mathbf{I}\hbox { }s_5 \mathbf{I}\hbox { }s_6 \mathbf{I}\hbox { }s_7 \mathbf{I}\hbox { }s_8 \mathbf{I}} \right] \), where

$$\begin{aligned} \left. {\begin{array}{l@{\quad }l} s_1 =1-3\xi ^{2}+2\xi ^{3} &{} s_2 =l\left( {\xi -2\xi ^{2}+\xi ^{3}} \right) \\ s_3 =l\left( {\eta -\xi \eta } \right) &{} s_4 =l\left( {\zeta -\zeta \xi } \right) \\ s_5 =3\xi ^{2}-2\xi ^{3} &{} s_6 =l\left( {-\xi ^{2}+\xi ^{3}} \right) \\ s_7 =l\xi \eta &{} s_8 =l\xi \zeta \hbox { } \\ \end{array}} \right\} \end{aligned}$$
(A.2)

where \(\xi =x/l\), \(\eta = y/l\), and \(\zeta = z/l\) are the dimensionless parameters of the element and l is the element length.

Fully parameterized ANCF thick plate element

The fully parameterized ANCF thick plate element, proposed in [37], is a 4-node element with 48 degrees of freedom. The nodal coordinates \(\mathbf{e}^{jk}\) at the node k of the finite element j are defined as

$$\begin{aligned} \mathbf{e}^{jk}=\left[ {\mathbf{r}^{jk^{\mathrm{T}}} \;\mathbf{r}_x^{jk^{\mathrm{T}}} \;\mathbf{r}_y^{jk^{\mathrm{T}}} \;\mathbf{r}_z^{jk^{\mathrm{T}}} } \right] ^{\mathrm{T}}\;\;\;\;\;\;k=1,\ldots ,4, \end{aligned}$$
(A.3)

where \(\mathbf{r}^{jk}\) is the absolute position vector at node k of the element j and \(\mathbf{r}_x^{jk} \), \(\mathbf{r}_y^{jk}\), and \(\mathbf{r}_z^{jk} \) are the position vector gradients obtained by differentiation with respect to the spatial coordinates x, y, and z, respectively. The shape function matrix of this element can be written as \({\varvec{S}} =\big [s_1 \mathbf{I}\hbox { }s_2 \mathbf{I}\hbox { }s_3 \mathbf{I}\hbox { }s_4 \mathbf{I}\hbox { }s_5 \mathbf{I}\hbox { }s_6 \mathbf{I}\hbox { }s_7 \mathbf{I}\hbox { }s_8 \mathbf{I}\hbox { }s_9 \mathbf{I}\hbox { }s_{10} \mathbf{I}\hbox { }s_{11} \mathbf{I}\hbox { }s_{12} \mathbf{I}\hbox { }s_{13} \mathbf{I}\hbox { }s_{14} \mathbf{I}\hbox { }s_{15} \mathbf{I}\hbox { }s_{16} \mathbf{I}\big ]\), where

$$\begin{aligned} \left. {\begin{array}{l@{\quad }l} s_1 =-\left( {\xi -1} \right) \left( {\eta -1} \right) \left( {2\eta ^{2}-\eta +2\xi ^{2}-\xi -1} \right) \hbox { } &{} s_2 =-a\xi \left( {\xi -1} \right) ^{2}\left( {\eta -1} \right) \\ s_3 =-b\eta \left( {\eta -1} \right) ^{2}\left( {\xi -1} \right) \hbox { } &{} s_4 =t\zeta \left( {\xi -1} \right) \left( {\eta -1} \right) \hbox { } \\ s_5 =\xi \left( {2\eta ^{2}-\eta -3\xi +2\xi ^{2}} \right) \left( {\eta -1} \right) \hbox { } &{} s_6 =-a\xi ^{2}\left( {\xi -1} \right) \left( {\eta -1} \right) \hbox { } \\ s_7 =b\xi \eta \left( {\eta -1} \right) ^{2}\hbox { } &{} s_8 =-t\xi \zeta \left( {\eta -1} \right) \\ s_9 =-\xi \eta \left( {1-3\xi -3\eta +2\eta ^{2}+2\xi ^{2}} \right) \hbox { } &{} s_{10} =a\xi ^{2}\eta \left( {\xi -1} \right) \hbox { } \\ s_{11} =b\xi \eta ^{2}\left( {\eta -1} \right) \hbox { } &{} s_{12} =t\xi \eta \zeta \\ s_{13} =\eta \left( {\xi -1} \right) \left( {2\xi ^{2}-\xi -3\eta +2\eta ^{2}} \right) \hbox { } &{} s_{14} =a\xi \eta \left( {\xi -1} \right) ^{2} \\ s_{15} =-b\eta ^{2}\left( {\xi -1} \right) \left( {\eta -1} \right) \hbox { } &{} s_{16} =-t\eta \zeta \left( {\xi -1} \right) \hbox { } \\ \end{array}} \right\} \end{aligned}$$
(A.4)

In this equation, \(\xi =x/a\), \(\eta =y/b\), and \(\zeta =z/t\) are the dimensionless parameters of the element and a, b, and t are the element length, width, and thickness respectively.

ANCF thin plate element

The ANCF thin plate element, proposed in [38], is a 4-node element with 36 degrees of freedom. The nodal coordinates \(\mathbf{e}^{jk}\) at node k of the finite element j are as follows:

$$\begin{aligned} \mathbf{e}^{jk}=\left[ {\mathbf{r}^{jk^{\mathrm{T}}} \;\mathbf{r}_x^{jk^{\mathrm{T}}} \;\mathbf{r}_y^{jk^{\mathrm{T}}} } \right] ^{\mathrm{T}}\;\;\;\;\;\;k=1,\ldots ,4, \end{aligned}$$
(A.5)

where \(\mathbf{r}^{jk}\) is the absolute position vector at node k of the element j and \(\mathbf{r}_x^{jk} \) and \(\mathbf{r}_y^{jk} \)are the position vector gradients obtained by differentiation with respect to the spatial coordinates x and y, respectively. The shape function matrix of this element can be written as \(\mathbf S =\left[ {s_1 \mathbf{I}\hbox { }s_2 \mathbf{I}\hbox { }s_3 \mathbf{I}\hbox { }s_4 \mathbf{I}\hbox { }s_5 \mathbf{I}\hbox { }s_6 \mathbf{I}\hbox { }s_7 \mathbf{I}\hbox { }s_8 \mathbf{I}\hbox { }s_9 \mathbf{I}\hbox { }s_{10} \mathbf{I}\hbox { }s_{11} \mathbf{I}\hbox { }s_{12} I} \right] \), where

$$\begin{aligned} \left. {\begin{array}{l@{\quad }l} s_1 =-\left( {\xi -1} \right) \left( {\eta -1} \right) \left( {2\eta ^{2}-\eta +2\xi ^{2}-\xi -1} \right) \hbox { } &{} s_2 =-a\xi \left( {\xi -1} \right) ^{2}\left( {\eta -1} \right) \\ s_3 =-b\eta \left( {\eta -1} \right) ^{2}\left( {\xi -1} \right) \hbox { } &{} s_4 =\xi \left( {2\eta ^{2}-\eta -3\xi +2\xi ^{2}} \right) \left( {\eta -1} \right) \hbox { } \\ s_5 =-a\xi ^{2}\left( {\xi -1} \right) \left( {\eta -1} \right) \hbox { } &{} s_6 =b\xi \eta \left( {\eta -1} \right) ^{2}\hbox { } \\ s_7 =-\xi \eta \left( {1-3\xi -3\eta +2\eta ^{2}+2\xi ^{2}} \right) &{} s_8 =a\xi ^{2}\eta \left( {\xi -1} \right) \\ s_9 =b\xi \eta ^{2}\left( {\eta -1} \right) \hbox { }&{} s_{10} =\eta \left( {\xi -1} \right) \left( {2\xi ^{2}-\xi -3\eta +2\eta ^{2}} \right) \hbox { } \\ s_{11} =a\xi \eta \left( {\xi -1} \right) \hbox { }&{} s_{12} =-b\eta ^{2}\left( {\xi -1} \right) ^{2}\left( {\eta -1} \right) \hbox { } \\ \end{array}} \right\} \end{aligned}$$
(A.6)

In this equation, \(\xi =x/a\) and \(\eta =y/b\) are the dimensionless parameters of the element, and a and b are the element length and width, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabana, A.A., Desai, C.J., Grossi, E. et al. Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements. Acta Mech 231, 1365–1376 (2020). https://doi.org/10.1007/s00707-019-02558-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02558-w

Navigation