Skip to main content
Log in

On the Vortex Sheets of Compressible Flows

  • Review Article
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

This paper provides a review of the recent results on the stability of vortex sheets in compressible flows. Vortex sheets are contact discontinuities of the underlying flows. The vortex sheet problem is a free boundary problem with a characteristic boundary and is challenging in analysis. The formulation of the vortex sheet problem will be introduced. The linear stability and nonlinear stability for both the two-dimensional two-phase compressible flows and the two-dimensional elastic flows are summarized. The linear stability of vortex sheets for the three-dimensional elastic flows is also presented. The difficulties of the vortex sheet problems and the ideas of proofs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Existence of rarefaction waves for multidimensional hyperbolic quasilinear systems. Commun. Partial Differ. Equ. 14, 173–230 (1989)

    MATH  Google Scholar 

  2. Azaiez, J., Homsy, G.: Linear stability of free shear flow of viscoelastic liquids. J. Fluid Mech. 268, 37–69 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Bony, J.: Symbolic calculus and propagation of singularities for nonlinear partial differential equations. Ann. Sci. Ecole Norm. Sup. 14, 209–246 (1981)

    MATH  Google Scholar 

  4. Brennen, C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  5. Chen, G.-Q., Secchi, P., Wang, T.: Nonlinear stability of relativistic vortex sheets in three dimensional Minkowski spacetime. Arch. Ration. Mech. Anal. 232, 591–695 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Chen, G.-Q., Secchi, P., Wang, T.: Stability of multidimensional thermoelastic contact discontinuities. Arch. Ration. Mech. Anal. 237, 1271–1323 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187, 369–408 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Chen, R.M., Hu, J., Wang, D.: Linear stability of compressible vortex sheets in two-dimensional elastodynamics. Adv. Math. 311, 18–60 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Chen, R.M., Hu, J., Wang, D.: Linear stability of compressible vortex sheets in 2D elastodynamics: variable coefficients. Math. Ann. 376, 863–912 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Chen, R.M., Hu, J., Wang, D., Wang, T., Yuan, D.: Nonlinear stability and existence of compressible vortex sheets in 2D elastodynamics. J. Differ. Equ. 269, 6899–6940 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Chen, R.M., Huang, F., Wang, D., Yuan, D.: On the stability of two-dimensional nonisentropic elastic vortex sheets. Commun. Pure Appl. Anal. 20, 2519–2533 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Chen, R.M., Huang, F., Wang, D., Yuan, D.: Stabilization effect of elasticity on three-dimensional compressible vortex sheets. Submitted (2021)

  13. Chen, S.-X.: Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary. Front. Math. China 2(1), 51–74 (2006)

    MathSciNet  Google Scholar 

  14. Coulombel, J.F., Morando, A.: Stability of contact discontinuities for the nonisentropic Euler equations. Ann. Univ. Ferrara. 50, 79–90 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Coulombel, J.F., Secchi, P.: The stability of compressible vortex sheets in two space dimensions. Indiana Univ. Math. J. 53, 941–1012 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Coulombel, J.F., Secchi, P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Ec. Norm. Super. 41, 85–139 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Third Edition, Grundlehren der Mathematischen Wissenschaften (Fundatmental Principles of Mathematical Sciences), vol. 235. Springer, Berlin (2010)

    Google Scholar 

  18. Fejer, J.A., Miles, W.: On the stability of a plane vortex sheet with respect to three dimensional disturbances. J. Fluid Mech. 15, 335–336 (1963)

    MathSciNet  MATH  Google Scholar 

  19. Francheteau, J., Metivier, G.: Existence of weak shocks for multidimenional hyperbolic quasilinear systems. Asterisque 268, 1–198 (2000)

    MATH  Google Scholar 

  20. Gavage, S.B., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems of Hyperbolic Partial Differential Equations with Applications. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  21. Hu, J.: Vortex sheets in elastic fluids. Thesis (Ph.D.), University of Pittsburgh, USA (2017)

  22. Hu, X., Wang, D.: Formation of singularity for compressible viscoelasticity. Acta Math. Sci. Ser. B Engl. Ed. 32(1), 109–128 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Huang, F., Wang, D., Yuan, D.: Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discret. Contin. Dyn. Syst. Ser. A 39, 3535–3575 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Huilgol, R.R.: Propagation of a vortex sheet in viscoelastic liquids the Rayleigh problem. J. Non-Newtonian Fluid Mech. 8, 337–347 (1981)

    MathSciNet  MATH  Google Scholar 

  25. Huilgol, R.R.: Fluid Mechanics of Viscoplasticity. Springer, Berlin (2015)

    MATH  Google Scholar 

  26. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New York (2006)

    MATH  Google Scholar 

  27. Kaffel, A., Renardy, M.: On the stability of plane parallel viscoelastic shear flows in the limit of infinite Weissenberg and Reynolds numbers. J. Non-Newtonian Fluid Mech. 165, 1670–1676 (2010)

    MATH  Google Scholar 

  28. Kolev, N.I.: Multiphase Flow Dynamics. Fundamentals, vol. 1. Springer, Berlin (2005)

    MATH  Google Scholar 

  29. Kolev, N.I.: Multiphase Flow Dynamics. Thermal and Mechanical Interactions, vol. 2. Springer, Berlin (2005)

    MATH  Google Scholar 

  30. Meyer, Y.: Remarks on a theorem of J.-M. Bony. Rend. Circ. Mat. Palermo 2, 1–20 (1981)

    MathSciNet  Google Scholar 

  31. Miles, J.W.: On the reflection of sound at an interface of relative motion. J. Acoust. Soc. Am. 29, 226–228 (1957)

    MathSciNet  Google Scholar 

  32. Miles, J.W.: On the disturbed motion of a plane vortex sheet. J. Fluid. Mech. 4, 538–552 (1958)

    MathSciNet  MATH  Google Scholar 

  33. Morando, A., Trakhinin, Y., Trebeschi, P.: Structural stability of shock waves in 2D compressible elastodynamics. Math. Ann. 378, 1471–1504 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Morando, A., Trebeschi, P.: Two-dimensional vortex sheets for the nonisentropic Euler equations: linear stability. J. Hyperbolic Differ. Equ. 5(3), 487–518 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Morando, A., Trebeschi, P., Wang, T.: Two-dimensional vortex sheets for the nonisentropic Euler equations: nonlinear stability. J. Differ. Equ. 266(9), 5397–5430 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Oldroyd, J.G.: Non-Newtonian effects in steady motion of some idealized elasco-viscous liquids. Proc. R. Soc. Lond. Ser. A 245, 278–297 (1958)

    MATH  Google Scholar 

  37. Ruan, L., Trakhinin, Y.: Elementary symmetrization of inviscid two-fluid flow equations giving a number of instant results. Phys. D 391, 66–71 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Ruan, L., Wang, D., Weng, S., Zhu, C.: Rectilinear vortex sheets of inviscid liquid-gas two-phase flow: linear stability. Commun. Math. Sci. 14, 735–776 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Secchi, P.: Well-posedness for a mixed problem for the equations of ideal magneto-hydrodynamics. Arch. Math. 64(3), 237–245 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Serre, D.: Systems of Conservation Laws. 2. Geometric Structure, Oscillations, and Initial-Boundary Value Problems. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  41. Stevens, B.: Short-time structural stability of compressible vortex sheets with surface tension. Arch. Ration. Mech. Anal. 222(2), 603–730 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191, 245–310 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Trakhinin, Y.: Well-posedness of the free boundary problem in compressible elastodynamics. J. Differ. Equ. 264, 1661–1715 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Wang, Y.-G., Yu, F.: Stability of contact discontinuities in three-dimensional compressible steady flows. J. Differ. Equ. 255, 1278–1356 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Wang, Y.-G., Yu, F.: Stabilization effect of magnetic fields on two-dimensional compressible current-vortex sheets. Arch. Ration. Mech. Anal. 208, 341–389 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Wang, Y.-G., Yu, F.: Structural stability of supersonic contact disconitnuities in three-dimensonal compressible steady flows. SIAM J. Math. Anal. 47, 1291–1329 (2015)

    MathSciNet  Google Scholar 

  47. Wang, Y.-G., Yuan, H.: Weak stability of transonic contact discontinuities in three-diemensional steady non-isentropic compressible Euler flows. Z. Angew. Math. Phys. 66, 341–388 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

R. M. Chen is supported in part by the NSF grant DMS-1907584. F. Huang was supported in part by the National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and the National Natural Sciences Foundation of China under Grant Nos. 11371349 and 11688101. D. Wang was supported in part by the NSF under grant DMS-1907519. D. Yuan was supported in part by the National Natural Sciences Foundation of China under Grant No. 12001045 and the China Postdoctoral Science Foundation under Grant Nos. 2020M680428 and 2021T140063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Wang.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Huang, F., Wang, D. et al. On the Vortex Sheets of Compressible Flows. Commun. Appl. Math. Comput. 5, 967–986 (2023). https://doi.org/10.1007/s42967-022-00191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00191-4

Keywords

Mathematics Subject Classification

Navigation