Skip to main content
Log in

Some Numerical Extrapolation Methods for the Fractional Sub-diffusion Equation and Fractional Wave Equation Based on the L1 Formula

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

With the help of the asymptotic expansion for the classic L1 formula and based on the L1-type compact difference scheme, we propose a temporal Richardson extrapolation method for the fractional sub-diffusion equation. Three extrapolation formulas are presented, whose temporal convergence orders in \(L_\infty\)-norm are proved to be 2, \(3-\alpha\), and \(4-2\alpha\), respectively, where \(0<\alpha <1\). Similarly, by the method of order reduction, an extrapolation method is constructed for the fractional wave equation including two extrapolation formulas, which achieve temporal \(4-\gamma\) and \(6-2\gamma\) order in \(L_\infty\)-norm, respectively, where \(1<\gamma <2\). Combining the derived extrapolation methods with the fast algorithm for Caputo fractional derivative based on the sum-of-exponential approximation, the fast extrapolation methods are obtained which reduce the computational complexity significantly while keeping the accuracy. Several numerical experiments confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29(1/2/3/4), 145–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, M.H., Deng, W.H.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37(2), A890–A917 (2015)

    Article  MATH  Google Scholar 

  4. Diethem, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algor. 16(3/4), 231–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5(22), 1–45 (2014)

  6. Dimitrov, Y.: A second order approximation for the Caputo fractional derivative. J. Fract. Calc. Appl. 7(2), 175–195 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Dimitrov, Y.: Three-point approximation for Caputo fractional derivative. Commun. Appl. Math. Comput. 31(4), 413–442 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34(10), 2998–3007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, R.H., Liu, Y., Hou, Y.X., Li, H., Fang, Z.C.: Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01032-9

  10. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230(3), 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, G.H., Sun, Z.Z.: Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differ. Equations 32(2), 591–615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Godoy, S., Garcia-Colin, L.S.: From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. E 53(6), 5779–5785 (1996)

    Article  Google Scholar 

  14. Guan, Z., Wang, X.D., Jie, O.Y.: An improved finite difference/finite element method for the fractional Rayleigh-Stokes problem with a nonlinear source term. J. Appl. Math. Comput. 65(1/2), 451–479 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional subdiffusion equation. J. Sci. Comput. 64(3), 959–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, C.C., Sun, Z.Z.: The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269, 775–791 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, C.P., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95(6/7), 1048–1099 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  21. Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Y.M., Li, X.J., Xu, C.J.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80(275), 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Y., Zhang, M., Li, H., Li, J.C.: High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6), 1298–1314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Du, W.Y., Li, H., Liu, F.W., Wang, Y.J.: Some second-order \(\theta\) schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algor. 80(2), 533–555 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lv, C.W., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differential and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  30. Qureshi, S., Yusuf, A., Shaikh, A.A., Inc, M.: Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data. Phys. A 534, 122149 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)

    Google Scholar 

  32. Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51(5/6), 616–624 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012) (in Chinese)

  35. Sun, Z.Z., Gao, G.H.: Fractional Differential Equations—Finite Difference Methods. De Gruyter, Berlin, Boston (2020)

    Book  MATH  Google Scholar 

  36. Sun, Z.Z., Gao, G.H.: The Finite Difference Methods of Fractional Differential Equations, 2nd edn. Science Press, Beijing (2021) (in Chinese)

  37. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014)

    Article  Google Scholar 

  39. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differ. Equations 32(3), 970–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun, H.G., Li, Z.P., Zhang, Y., Chen, W.: Fractional and fractal derivative models for transient anomalous diffusion: model comparison. Chaos Solitons Fractals 102, 346–353 (2017)

    Article  MathSciNet  Google Scholar 

  41. Sun, Z.Z., Ji, C.C., Du, R.L.: A new analytical technique of the L-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations. Appl. Math. Lett. 102, 106115 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213(1), 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer. Algor. 72(1), 195–210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Y.M.: A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection-diffusion equations. Calcolo 54(3), 733–768 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Y.M.: A Crank-Nicolson-type compact difference method and its extrapolation for time fractional Cattaneo convection-diffusion equations with smooth solutions. Numer. Algor. 81(2), 489–527 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, Y.M., Ren, L.: A high-order L2-compact difference method for Caputo-type time fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput. 342, 71–93 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Wang, Z.B., Vong, S.: Compact difference schemes for the modified anomalous fractional subdiffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, Y.M., Wang, T.: A compact ADI method and its extrapolation for time fractional subdiffusion equations with nonhomogeneous Neumann boundary conditions. Comput. Math. Appl. 75(3), 721–739 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, X.H., Zhang, H.X., Xu, D.: Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 256, 824–837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yong, Z., Benson, D.A., Meerschaert, M.M., Scheffler, H.P.: On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123(1), 89–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhou, H., Tian, W.Y., Deng, W.H.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56(1), 45–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (grant number 11671081). The authors thank the anonymous referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of the paper. The authors are grateful to Prof. Guang-hua Gao at College of Science, Nanjing University of Posts and Telecommunications, for reminding us to revisit Dimitrov’s work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Sun.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Rj., Sun, Zz. Some Numerical Extrapolation Methods for the Fractional Sub-diffusion Equation and Fractional Wave Equation Based on the L1 Formula. Commun. Appl. Math. Comput. 4, 1313–1350 (2022). https://doi.org/10.1007/s42967-021-00177-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00177-8

Keywords

Mathematics Subject Classification

Navigation