Skip to main content
Log in

High-Order Semi-Lagrangian WENO Schemes Based on Non-polynomial Space for the Vlasov Equation

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we present a semi-Lagrangian (SL) method based on a non-polynomial function space for solving the Vlasov equation. We find that a non-polynomial function based scheme is suitable to the specifics of the target problems. To address issues that arise in phase space models of plasma problems, we develop a weighted essentially non-oscillatory (WENO) scheme using trigonometric polynomials. In particular, the non-polynomial WENO method is able to achieve improved accuracy near sharp gradients or discontinuities. Moreover, to obtain a high-order of accuracy in not only space but also time, it is proposed to apply a high-order splitting scheme in time. We aim to introduce the entire SL algorithm with high-order splitting in time and high-order WENO reconstruction in space to solve the Vlasov-Poisson system. Some numerical experiments are presented to demonstrate robustness of the proposed method in having a high-order of convergence and in capturing non-smooth solutions. A key observation is that the method can capture phase structure that require twice the resolution with a polynomial based method. In 6D, this would represent a significant savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Besse, N., Latu, G., Ghizzo, A., Sonnendrücker, E., Bertrand, P.: A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system. J. Comput. Phys. 227(16), 7889–7916 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (1985)

    Google Scholar 

  3. Blanesa, S., Moanb, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods. J. Comput. Appl. Math. 142, 313–330 (2002)

    MathSciNet  Google Scholar 

  4. Bordas, S., Nguyen, P.V., Dunant, C., Guidoum, A., Nguyen-Dang, H.: An extended finite element library. Int. J. Numer. Methods Eng. 71(6), 703–732 (2007)

    MATH  Google Scholar 

  5. Boyd, J.: Chebyshev and Fourier Spectrum Methods. Springer, New York (1989)

    MATH  Google Scholar 

  6. Burgan, J., Gutierrez, J., Fijalkow, E., Navet, M., Feix, M.: Self-similar solutions for Vlasov and water-bag models. J. Plasma Phys. 19(1), 135–146 (1978)

    Google Scholar 

  7. Cai, X., Qiu, J., Qiu, J.-M.: A conservative semi-Lagrangian HWENO method for the Vlasov equation. J. Comput. Phys. 323, 95–114 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Carrillo, J.A., Vecil, F.: Nonoscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29(3), 1179–1206 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Chen, G., Chacon, L.: A multi-dimensional, energy-and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm. Comput. Phys. Commun. 197, 73–87 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Chen, G., Chacón, L., Barnes, D.C.: An energy-and charge-conserving, implicit, electrostatic particle-in-cell algorithm. J. Comput. Phys. 230(18), 7018–7036 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Cheng, C.-Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22(3), 330–351 (1976)

    Google Scholar 

  12. Cheng, Y., Christlieb, A.J., Zhong, X.: Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampere system. J. Comput. Phys. 256, 630–655 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Cheng, Y., Christlieb, A.J., Zhong, X.: Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system. J. Comput. Phys. 279, 145–173 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Christlieb, A., Guo, W., Jiang, Y., Yang, H.: A moving mesh WENO method based on exponential polynomials for one-dimensional conservation laws. J. Comput. Phys. 380, 334–354 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Christlieb, A., Hitchon, W., Lawler, J., Lister, G.: Integral and Lagrangian simulations of particle and radiation transport in plasma. J. Phys. D Appl. Phys. 42(19), 194007 (2009)

    Google Scholar 

  16. Christlieb, A., Sands, W., Yang, H.: Superconvergent non-polynomial approximations (2020). https://arxiv.org/abs/2011.02654v2. Accessed 17 Jun 2021

  17. Christlieb, A.J., Krasny, R., Verboncoeur, J.P., Emhoff, J.W., Boyd, I.D.: Grid-free plasma simulation techniques. IEEE Trans. Plasma Sci. 34(2), 149–165 (2006)

    Google Scholar 

  18. Colombi, S., Touma, J.: Vlasov-Poisson: the waterbag method revisited. Commun. Nonlinear Sci. Numer. Simul. 13(1), 46–52 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Crouseilles, N., Faou, E., Mehrenberger, M.: High order Runge-Kutta-Nystrom splitting methods for the Vlasov-Poisson equation. inria-00633934 (2011)

  20. Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247–266 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172(1), 166–187 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Gibbon, P., Speck, R., Karmakar, A., Arnold, L., Frings, W., Berberich, B., Reiter, D., Mašek, M.: Progress in mesh-free plasma simulation with parallel tree codes. IEEE Trans. Plasma Sci. 38(9), 2367–2376 (2010)

    Google Scholar 

  23. Güçlü, Y., Christlieb, A.J., Hitchon, W.N.: Arbitrarily high order convected scheme solution of the Vlasov-Poisson system. J. Comput. Phys. 270, 711–752 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: Sixth-order weighted essentially nonoscillatory schemes based on exponential polynomials. SIAM J. Sci. Comput. 38, 1987–2017 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: A sixth-order weighted essentially nonoscillatory schemes based on exponential polynomials for Hamilton-Jacobi equations. J. Sci. Comput. 75, 1675–1700 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Ha, Y., Kim, C.H., Yang, H., Yoon, J.: Improving accuracy of the fifth-order WENO scheme by using the exponential approximation space. SIAM J. Numer. Anal. 59, 143–172 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Hitchon, W., Koch, D., Adams, J.: An efficient scheme for convection-dominated transport. J. Comput. Phys. 83(1), 79–95 (1989)

    MATH  Google Scholar 

  28. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill, New York (1981)

    MATH  Google Scholar 

  29. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Karlin, S., Studden, W.: Tchebycheff Systems: with Applications in Analysis and Statistics. Interscience Publishers, Geneva (1966)

    MATH  Google Scholar 

  31. Laborde, P., Pommier, J., Renard, Y., Salaün, M.: High-order extended finite element method for cracked domains. Int. J. Numer. Methods Eng. 64(3), 354–381 (2005)

    MATH  Google Scholar 

  32. Markidis, S., Lapenta, G.: The energy conserving particle-in-cell method. J. Comput. Phys. 230, 7037–7052 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Matyash, K., Schneider, R., Sydora, R., Taccogna, F.: Application of a grid-free kinetic model to the collisionless sheath. Contrib. Plasma Phys. 48(1/2/3), 116–120 (2008)

    Google Scholar 

  34. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Nakamura, T., Yabe, T.: Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space. Comput. Phys. Commun. 120(2/3), 122–154 (1999)

    MATH  Google Scholar 

  36. Pohn, E., Shoucri, M., Kamelander, G.: Eulerian Vlasov codes. Comput. Phys. Commun. 166, 81–93 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229(4), 1130–1149 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Qiu, J.-M., Russo, G.: A high order multi-dimensional characteristic tracing strategy for the Vlasov-Poisson system. J. Sci. Comput. 71(1), 414–434 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10, 979–1000 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov-Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Siddi, L., Lapenta, G., Gibbon, P.: Mesh-free Hamiltonian implementation of two dimensional Darwin model. Phys. Plasmas 24(8), 082103 (2017)

    Google Scholar 

  43. Sirajuddin, D., Hitchon, W.N.: A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system. J. Comput. Phys. 392, 619–665 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)

    MathSciNet  MATH  Google Scholar 

  45. Tabarraei, A., Sukumar, N.: Extended finite element method on polygonal and quadtree meshes. Comput. Methods Appl. Mech. Eng. 197(5), 425–438 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Verboncoeur, J.P.: Particle simulation of plasmas: review and advances. Plasma Phys. Control. Fusion 47(5A), A231 (2005)

    Google Scholar 

  47. Wang, B., Miller, G.H., Colella, P.: A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas. SIAM J. Sci. Comput. 33(6), 3509–3537 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Watanabe, T.H., Sugama, H.: Vlasov and drift kinetic simulation methods based on the symplectic integrator. Transp. Theory Stat. Phys. 34, 287–309 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Wolf, E.M., Causley, M., Christlieb, A., Bettencourt, M.: A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver. J. Comput. Phys. 326, 342–372 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Xiong, T., Qiu, J.-M., Xu, Z.F., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618–639 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Xiong, T., Russo, G., Qiu, J.-M.: Conservative multi-dimensional semi-Lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. J. Sci. Comput. 79(2), 1241–1270 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    MathSciNet  Google Scholar 

  53. Zhu, J., Qiu, J.: Trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems. Commun. Comput. Phys. 8, 1242–1263 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Zhu, J., Qiu, J.: WENO schemes and their application as limiters for RKDG methods based on trigonometric approximation spaces. J. Sci. Comput. 55, 606–644 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank AFOSR and NSF for their support of this work under grants FA9550-19-1-0281 and FA9550-17-1-0394 and NSF grant DMS 191218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoseon Yang.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendices

Appendix A Formulation of \(\mathbf {C}\) and \(\mathbf {c}_k\)

The numerical flux \({\hat{f}}_{j-\frac{1}{2}}\) in (25) based on the function space \(\varGamma _5 = \mathrm{span} \{\cos {x},\sin { x}, x^2, x^3, x^4\}\) is constructed by using the coefficients

$$\begin{aligned} \mathbf {C} = \left[ \frac{550}{16\,403}, -\frac{157}{724}, \frac{1\,587}{2\,057}, \frac{281}{599}, -\frac{155}{3\,016} \right] ^{\text T}. \end{aligned}$$

The local numerical flux \({\hat{f}}_{j-\frac{1}{2}}^k\) in (26) can be obtained based on algebraic function space \(\varPi _3 =\mathrm{span}\{1, x, x^2\}\) with the constants

$$\begin{aligned} \mathbf {c}^0&= \left[ \frac{1}{3} ,-\frac{7}{6}, \frac{11}{6} \right] ^{\text T}, \\ \mathbf {c}^1&= \left[ -\frac{1}{6} , \frac{5}{6}, \frac{1}{3} \right] ^{\text T}, \\ \mathbf {c}^2&= \left[ \frac{1}{3} , \frac{5}{6},-\frac{1}{6} \right] ^{\text T}, \end{aligned}$$

or based on the function space \(\mathrm{span} \{1, \sin {x},\cos { x}\}\) with the coefficients

$$\begin{aligned} \mathbf {c}^0&= \left[ \frac{109}{280 } , -\frac{478}{471 }, \frac{ 1\,411}{868 } \right] ^{\text T}, \\ \mathbf {c}^1&= \left[ -\frac{826}{4\,031} , \frac{1\,973}{2\,419}, \frac{ 109}{280 } \right] ^{\text T}, \\ \mathbf {c}^2&= \left[ \frac{109}{280 } , \frac{1\,973}{2\,419}, -\frac{ 826}{4\,031 } \right] ^{\text T}. \end{aligned}$$

Appendix B Proof of Proposition 2

Assuming f smooth enough around the stencil, we can represent the smoothness indicators (28) using Taylor expansion as

$$\begin{aligned} \begin{aligned} \beta _0&= \left( \Delta x f'_{j-\frac{1}{2}} -\frac{23}{24} \Delta x^3 f'''_{j-\frac{1}{2}} + {{\mathcal {O}}}(\Delta x^4) \right) ^2 + \left( \Delta x^2 f''_{j-\frac{1}{2}} -\frac{3}{2} \Delta x^3 f'''_{j-\frac{1}{2}} + {{\mathcal {O}}}(\Delta x^4) \right) ^2, \\ \beta _1&= \left( \Delta x f'_{j-\frac{1}{2}} +\frac{1}{24} \Delta x^3 f'''_{j-\frac{1}{2}} + {{\mathcal {O}}}(\Delta x^4) \right) ^2 + \left( \Delta x^2 f''_{j-\frac{1}{2}} -\frac{1}{2} \Delta x^3 f'''_{j-\frac{1}{2}} + {{\mathcal {O}}}(\Delta x^4) \right) ^2, \\ \beta _2&= \left( \Delta x f'_{j-\frac{1}{2}} +\frac{1}{24} \Delta x^3 f'''_{j-\frac{1}{2}} + {{\mathcal {O}}}(\Delta x^4) \right) ^2 + \left( \Delta x^2 f''_{j-\frac{1}{2}} +\frac{1}{2} \Delta x^3 f'''_{j-\frac{1}{2}} + {{\mathcal {O}}}(\Delta x^4) \right) ^2. \end{aligned} \end{aligned}$$

Then for each \(k=0,1,2\), we can obtain

$$\begin{aligned} 1+\frac{\tau }{(\epsilon +\beta _k)^2}&= 1+\frac{(\beta _2 - \beta _0)^2}{(\epsilon +\beta _k)^2} \\&= 1+\frac{\left( 2\Delta x^4 f'_{j-\frac{1}{2}} f'''_{j-\frac{1}{2}} + {{\mathcal {O}}}(\Delta x^5) \right) ^2}{(\epsilon +\beta _k)^2} \\&= 1+ C \Delta x^4 + {{\mathcal {O}}}(\Delta x^5) \end{aligned}$$

with a constant C, by choosing \(\epsilon = \Delta x^2\), so that it is straightforward by the definition of \(\omega _k\) in (29).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christlieb, A., Link, M., Yang, H. et al. High-Order Semi-Lagrangian WENO Schemes Based on Non-polynomial Space for the Vlasov Equation. Commun. Appl. Math. Comput. 5, 116–142 (2023). https://doi.org/10.1007/s42967-021-00150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00150-5

Keywords

Mathematics Subject Classification

Navigation