Skip to main content
Log in

On Periodic Oscillation and Its Period of a Circadian Rhythm Model

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We theoretically study periodic oscillation and its period of a circadian rhythm model of Neurospora and provide the conditions for the existence of such a periodic oscillation by the theory of competitive dynamical systems. To present the exact expression of the unique equilibrium in terms of parameters of system, we divide them into eleven classes for the Hill coefficient \(n=1\) or \(n=2\), among seven classes of which nontrivial periodic oscillations exist. Numerical simulations are made among the seven classes and the models with the Hill coefficient \(n=3\) or \(n=4\) to reveal the influence of parameter variation on periodic oscillations and their periods. The results show that their periods of the periodic oscillations are approximately 21.5 h, which coincides with the known experiment result observed in constant darkness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beadle, G.W., Tatum, E.L.: Genetic control of biochemical reactions in Neurospora. PNAS 28(11), 234–243 (1941)

    Google Scholar 

  2. Bodenstein, C., Heiland, I., Schuster, S.: Temperature compensation and entrainment in circadian. Phys. Biol. 9(3), e036011 (2012)

    Article  Google Scholar 

  3. Diekmann, C., Brody, S.: Circadian rhythms in Neurospora crassa: oligomycin-resistant mutations affect periodicity. Science 207(4433), 896–898 (1980)

    Article  Google Scholar 

  4. Drescher, K., Cornelius, G., Rensing, L.: Phase response curves obtained by perturbing different variables of a 24 hr model oscillator based on translational control. J. Theor. Biol. 94(2), 345–353 (1982)

    Article  Google Scholar 

  5. Francois, P.: A model for the Neurospora circadian clock. Biophys. J. 88(4), 2369–2383 (2005)

    Article  Google Scholar 

  6. Gedeon, T.: Oscillations in monotone systems with a negative feedback. SIAM J. Appl. Dyn. Syst. 9(1), 84–112 (2010)

    Article  MathSciNet  Google Scholar 

  7. Goldbeter, A.: A model for circadian oscillations in the Drosophila period protein (PER). Proc. Biol. Sci. 261(1362), 319–324 (1995)

    Article  Google Scholar 

  8. Gonze, D., Abou-Jaoude, W.: The Goodwin model: behind the Hill function. PLoS One 8(8), e69573 (2013)

    Article  Google Scholar 

  9. Gonze, D., Leloup, J.C., Goldbeter, A.: Theoretical models for circadian rhythms in Neurospora and Drosophila. C. R. Acad. Sci. 323(1), 57–67 (2000)

    Article  Google Scholar 

  10. Goodwin, B.C.: Oscillatory behavior in enzymatic control. Adv. Enzyme Reg. 3, 425–439 (1965)

    Article  Google Scholar 

  11. Gérard, C., Gonze, D., Goldbeter, A.: Dependence of the period on the rate of protein degradation in minimal models for circadian oscillations. Philos. Trans. A Math. Phys. Eng. Sci. 367(1908), 4665–4683 (2009)

    MATH  Google Scholar 

  12. Hastings, J.W., Schweiger, H.G.: The molecular basis of circadian rhythms: report of the Dahlem Workshop on the Molecular Basis of Circadian Rhythms. Berlin 1975, November 3 to 7. Abakon Verlagsgesellschaft (1976) (in Komm.)

  13. Hirsch, M.W.: Systems of differential equations which are competitive or cooperative: I. limit sets. SIAM J. Math. Anal. 13(2), 167–179 (1982)

    Article  MathSciNet  Google Scholar 

  14. Hong, C.I., Jolma, W., Loros, J., Dunlap, J., Ruoff, P.: Simulating dark expressions and interactions of FRQ and wc-1 in the Neurospora circadian clock. Biophys. J. 94(4), 1221–1232 (2008)

    Article  Google Scholar 

  15. Leloup, J.C., Gonze, D., Goldbeter, A.: Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14(6), 433–448 (1999)

    Article  Google Scholar 

  16. Loros, J.J., Dunlap, J.C.: Genetic and molecular analysis of circadian rhythms in Neurospora. Annu. Rev. Physiol. 63(1), 757–794 (2001)

    Article  Google Scholar 

  17. Mao, X.Y., Li, X.P.: Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete Cont. Dyn. 24(2), 523–545 (2009)

    Article  MathSciNet  Google Scholar 

  18. McKelvey, J.P.: Simple transcendental expressions for the roots of cubic equations. Am. J. Phys. 52(3), 269–270 (1984)

    Article  MathSciNet  Google Scholar 

  19. Nickalls, R.W.D.: A new approach to solving the cubic: Cardan’s solution revealed. Math. Gaz. 77(480), 354–359 (1993)

    Article  Google Scholar 

  20. Ruoff, P., Rensing, L.: The temperature compensated Goodwin model simulates many circadian clock properties. J. Theor. Biol. 179(4), 275–285 (1996)

    Article  Google Scholar 

  21. Ruoff, P., Vinsjevik, M., Monnerjahn, C., Rensing, L.: The Goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of neurospora crassa. J. Theor. Biol. 209(1), 29–42 (2001)

    Article  Google Scholar 

  22. Shi, J.C., Li, Q.S.: Sustainment and controlment of noise-induced circadian oscillations in Neurospora: noise and external signal effects. Int. J. Theor. Phys. 46(10), 2351–2365 (2007)

    Article  Google Scholar 

  23. Smith, H.L.: Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, vol. 41. Math. survey Monogr, AMS, Providence, R.I. (1995)

  24. Sun, M.R., Wang, Y., Xu, X., Yang, L.: Dynamical mechanism of circadian singularity behavior in Neurospora. Phys. A 457(1), 101–108 (2016)

    Article  MathSciNet  Google Scholar 

  25. Tonnelier, A.: Cyclic negative feedback systems: what is the chance of oscillation? Bull. Math. Biol. 76(5), 1155–1193 (2014)

    Article  MathSciNet  Google Scholar 

  26. Tseng, Y.Y., Hunt, S.M., Heintzen, C.: Comprehensive modelling of the Neurospora circadian clock and its temperature compensation. PLoS Comput. Biol. 8(3), e1002437 (2012)

    Article  Google Scholar 

  27. Xie, Z., Kulasiri, D.: Modelling of circadian rhythms in Drosophila incorporating the interlocked PER/TIM and VRI/PDP1 feedback loops. J. Theor. Biol. 245(2), 290–304 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Feng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 11771295).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Zhang, C. On Periodic Oscillation and Its Period of a Circadian Rhythm Model. Commun. Appl. Math. Comput. 4, 1131–1157 (2022). https://doi.org/10.1007/s42967-021-00146-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00146-1

Keywords

Mathematics Subject Classification

Navigation