Skip to main content

Advertisement

Log in

On Conditions for the Existence of Cycles in Two Models of a Circadian Oscillator of Mammals

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We construct two nonlinear dynamical systems of the functioning simplest circadian oscillator. Some conditions of the uniqueness of the equilibrium point of these systems are described as well as the conditions for the existence of cycles in their phase portraits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. U. Albrecht, “Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks,” Neuron 74 (2), 246–260 (2012).

    Article  Google Scholar 

  2. S. A. Newman and G. Forgacs, “Complexity and Self-Organization in Biological Development and Evolution,” Complexity in Chemistry, Biology, and Ecology (Springer, 2005), pp. 49–96.

  3. B. C. Goodwin, Temporal Organization in Cells: A Dynamic Theory of Cellular Control Processes (Acad. Press, London, 1963).

    Google Scholar 

  4. B. C. Goodwin, “Oscillatory Behavior in Enzymatic Control Processes,” Adv. Enzyme Regul. 3, 425–438 (1965).

    Article  Google Scholar 

  5. O. A. Podkolodnaya, N. N. Tverdokhleb, and N. L. Podkolodnyy, “Computational Modeling of the Cell Autonomous Mammalian Circadian Oscillator,” BMC Syst. Biol. 11, 27–42 (2017).

    Article  Google Scholar 

  6. S. Almeida, M. Chaves, and F. Delaunay, “Transcription-Based Circadian Mechanism Controls the Duration of Molecular Clock States in Response to Signaling Inputs,” J. Theor. Biol. 484, 110015 (2020).

    Article  Google Scholar 

  7. T. K. Sato, S. Panda, L. J. Miraglia, T. M. Reyes, R. D. Rudic, P. Mcnamara, K. A. Naik, G. A. Fitzgerald, S. A. Kay, and J. B. Hogenesch, “A Functional Genomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock,” Neuron 43 (4), 527–537 (2004).

    Article  Google Scholar 

  8. S. Hastings, J. Tyson, and D. Webster, “Existence of Periodic Solutions for Negative Feedback Cellular Control System,” J. Differential Equations 25, 39–64 (1977).

    Article  MathSciNet  Google Scholar 

  9. J. Hofbauer, J. Mallet-Paret, and H. L. Smith, “Stable Periodic Solutions for the Hypercycle System,” J. Dyn. Diff. Equat. 3 (3), 423–436 (1991).

    Article  MathSciNet  Google Scholar 

  10. A. A. Akinshin, T. A. Bukharina, V. P. Golubyatnikov, and D. P. Furman, “Mathematical Modeling the Interaction of Two Cells in a Proneuralizing Cluster of Wing Imaginal Bud of D. melanogaster,” Sibir. Zh. Chist. Prikl. Mat. 14 (4), 3–10 (2014).

    MATH  Google Scholar 

  11. M. B. Elowitz and S. Leibler, “A Synthetic Oscillatory Network of Transcriptional Regulators,” Nature 403, 335–338 (2000).

    Article  Google Scholar 

  12. System Computer Biology, Ed. by N. A. Kolchanov, S. S. Goncharov, V. A. Ivanisenko, and V. A. Likhoshvai (Izd. Sib. Otd. Ross. Akal. Nauk, Novosibirsk, 2008) [in Russian].

  13. T. A. Bukharina, A. A. Akinshin, V. P. Golubyatnikov, and D. P. Furman, “Mathematical and Numerical Models of the Central Regulatory Circuit of the Morphogenesis System of Drosophila,” Sibir. Zh. Ind. Mat. 23 (2), 41–50 (2020) [J. Appl. Ind. Math. 14 (2), 249–255 (2020)].

    Article  MathSciNet  Google Scholar 

  14. L. Glass and J. S. Pasternack, “Stable Oscillations in Mathematical Models of Biological Control Systems,” J. Math. Biology 6, 207–223 (1978).

    Article  MathSciNet  Google Scholar 

  15. R. Smith, “Orbital Stability of Ordinary Differential Equations,” J. Differential Equations 69, 265–287 (1987).

    Article  MathSciNet  Google Scholar 

  16. Yu. A. Gaidov, V. P. Golubyatnikov, “About Some Nonlinear Dynamic Systems That Model the Asymmetrical Gene Networks,” Sibir. Zh. Chist. Prikl. Mat. 7 (2), 8–17 (2007).

    Google Scholar 

  17. Yu. A. Gaidov, V. P. Golubyatnikov, and E. Mjolsness, “Topological Index of a Model of p53-Mdm2 Circuit,” Inform. Vestnik Vavilov. Obshch. Genet. i Selekts. 13 (1), 160–162 (2009).

    Google Scholar 

  18. N. E. Kirillova, “On Invariant Surfaces in Gene Network Models,” Sibir. Zh. Ind. Mat. 23 (4), 69–76 (2020) [J. Appl. Ind. Math. 14 (4), 666–671 (2020)].

    Article  MathSciNet  Google Scholar 

  19. D. V. Anosov, Mappings of a Circle, Vector Fields, and Their Applications (Izd. MTsNMO, Moscow, 2003) [in Russian].

    Google Scholar 

  20. R. Abraham and J. Robbins, Transversal Mappings and Flows (W. A. Benjamin Inc., New York, 1967).

    Google Scholar 

  21. D. V. Anosov, “Remarks Concerning Hyperbolic Sets,” J. Math. Sci. 78 (5), 497–529 (1996).

    Article  MathSciNet  Google Scholar 

  22. J. S. Griffith, “Mathematics of Cellular Control Processes. I. Negative Feedback to One Gene,” J. Theor. Biol. 20 (2), 202–208 (1968).

    Article  Google Scholar 

  23. D. Gonze and W. Abou-Jaoudé, “The Goodwin Model: Behind the Hill Function,” PLoS ONE 8 (8), e69573 (2013).

    Article  Google Scholar 

  24. J. K. Kim, “Protein Sequestration Versus Hill-Type Repression in Circadian Clock Models,” IET Syst. Biol. 10 (4), 125–135 (2016).

    Article  Google Scholar 

  25. A. C. Liu, H. G. Tran, E.E. Zhang, A. A. Priest, D. K. Welsh, and S. A. Kay, “Redundant Function of REV-ERB-Alpha and Beta and Nonessential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms,” PLoS Genet. 4 (2), e1000023 (2008).

    Article  Google Scholar 

  26. P. T. Foteinou, A. Venkataraman, L. J. Francey, R. C. Anafi, J. B. Hogenesch, and F. J. Doyle 3rd., “Computational and Experimental Insights into the Circadian Effects of SIRT1,” Proc. Nat. Acad. Sci. U.S.A. 115 (45), 11643–11648 (2018).

  27. V. P. Golubyatnikov and N. E. Kirillova, “Phase Portraits of Models of Two Gene Networks,” Mat. Zametki Sev.-Vost. Feder. Univ. 28 (1), 3–11 (2021).

    Google Scholar 

  28. S. Smale, “A Mathematical Model of Two Cells via Turing’s Equation,” in Lecture in Applied Mathematics, Vol. 6 (AMS, 1974), pp. 15–26.

Download references

Funding

The authors were supported within the framework of the State Contract of Institute of Cytology and Genetics (project no. FWNR–2022–0020), the State Contract of Institute of Computational Mathematics and Mathematical Geophysics (project no. 0251–2021–0004), the State Contract of Sobolev Institute of Mathematics (project no. FWNF–2022–0009), and partially by the Russian Foundation for Basic Research (project no. 20–31–90011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Golubyatnikov, O. A. Podkolodnaya, N. L. Podkolodnyy, N. B. Ayupova, N. E. Kirillova or E. V. Yunosheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubyatnikov, V.P., Podkolodnaya, O.A., Podkolodnyy, N.L. et al. On Conditions for the Existence of Cycles in Two Models of a Circadian Oscillator of Mammals. J. Appl. Ind. Math. 15, 597–608 (2021). https://doi.org/10.1134/S1990478921040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478921040037

Keywords

Navigation