Skip to main content
Log in

Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refinement

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we develop subspace correction preconditioners for discontinuous Galerkin (DG) discretizations of elliptic problems with hp-refinement. These preconditioners are based on the decomposition of the DG finite element space into a conforming subspace, and a set of small nonconforming edge spaces. The conforming subspace is preconditioned using a matrix-free low-order refined technique, which in this work, we extend to the hp-refinement context using a variational restriction approach. The condition number of the resulting linear system is independent of the granularity of the mesh h, and the degree of the polynomial approximation p. The method is amenable to use with meshes of any degree of irregularity and arbitrary distribution of polynomial degrees. Numerical examples are shown on several test cases involving adaptively and randomly refined meshes, using both the symmetric interior penalty method and the second method of Bassi and Rebay (BR2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson, R., et al.: MFEM: a modular finite element methods library. Comput. Math. Appl. 81, 42–74 (2021). https://doi.org/10.1016/j.camwa.2020.06.009

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Ayuso, B.: Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. ESAIM: Mathematical Modelling and Numerical Analysis 41(1), 21–54 (2007) https://doi.org/10.1051/m2an:2007006

  3. Antonietti, P.F., Giani, S., Houston, P.: Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comput. 60(1), 203–227 (2013) https://doi.org/10.1007/s10915-013-9792-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Antonietti, P.F., Houston, P.: A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods. J. Sci. Comput. 46(1), 124–149 (2010) https://doi.org/10.1007/s10915-010-9390-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Antonietti, P.F., Houston, P., Pennesi, G., Suli, E.: An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids. Math. Comput. 89(325), 2047–2083 (2020) https://doi.org/10.1090/mcom/3510

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonietti, P.F., Houston, P., Smears, I.: A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for hp-version discontinuous Galerkin methods. Int. J. Numer. Anal. Model. 13(4), 513–524 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Antonietti, P.F., Melas, L.: Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods. SIAM J. Sci. Comput. 42(2), A1147–A1173 (2020) https://doi.org/10.1137/18m1204383

    Article  MathSciNet  MATH  Google Scholar 

  8. Antonietti, P.F., Sarti, M., Verani, M.: Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems. SIAM J. Numer. Anal. 53(1), 598–618 (2015) https://doi.org/10.1137/130947015

    Article  MathSciNet  MATH  Google Scholar 

  9. Antonietti, P.F., Sarti, M., Verani, M., Zikatanov, L.T.: A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems. J. Sci. Comput. 70(2), 608–630 (2016) https://doi.org/10.1007/s10915-016-0259-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982) https://doi.org/10.1137/0719052

    Article  MathSciNet  MATH  Google Scholar 

  11. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002) https://doi.org/10.1137/S0036142901384162

    Article  MathSciNet  MATH  Google Scholar 

  12. Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flows. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods, vol. 11, pp. 77–88. Springer, Berlin (2000) https://doi.org/10.1007/978-3-642-59721-3_4

    Chapter  MATH  Google Scholar 

  13. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems. Numer. Linear Algebra Appl. 19(2), 367–388 (2012) https://doi.org/10.1002/nla.1816

    Article  MathSciNet  MATH  Google Scholar 

  14. Bernardi, C., Maday, Y., Rapetti, F.: Basics and some applications of the mortar element method. GAMM-Mitteilungen 28(2), 97–123 (2005) https://doi.org/10.1002/gamm.201490020

    Article  MathSciNet  MATH  Google Scholar 

  15. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2007) https://doi.org/10.1017/cbo9780511618635

    Book  MATH  Google Scholar 

  16. Brix, K., Campos Pinto, M., Canuto, C., Dahmen, W.: Multilevel preconditioning of discontinuous Galerkin spectral element methods. Part I: geometrically conforming meshes. IMA J. Numer. Anal. 35(4), 1487–1532 (2014). https://doi.org/10.1093/imanum/dru053

    Article  MathSciNet  MATH  Google Scholar 

  17. Brix, K., Pinto, M.C., Dahmen, W.: A multilevel preconditioner for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 46(5), 2742–2768 (2008) https://doi.org/10.1137/07069691x

    Article  MathSciNet  MATH  Google Scholar 

  18. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comput. 76(259), 1119–1141 (2007) https://doi.org/10.1090/s0025-5718-07-01951-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Canuto, C.: Stabilization of spectral methods by finite element bubble functions. Comput. Methods Appl. Mech. Eng. 116(1/2/3/4), 13–26 (1994)

    Article  MathSciNet  Google Scholar 

  20. Canuto, C., Gervasio, P., Quarteroni, A.: Finite-element preconditioning of G-NI spectral methods. SIAM J. Sci. Comput. 31(6), 4422–4451 (2010) https://doi.org/10.1137/090746367

    Article  MathSciNet  MATH  Google Scholar 

  21. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006) https://doi.org/10.1007/978-3-540-30726-6

  22. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38(157), 67–86 (1982) https://doi.org/10.1090/s0025-5718-1982-0637287-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002) https://doi.org/10.1137/s1064827501388339

    Article  MathSciNet  MATH  Google Scholar 

  24. Červený, J., Dobrev, V., Kolev, T.: Nonconforming mesh refinement for high-order finite elements. SIAM J. Sci. Comput. 41(4), C367–C392 (2019) https://doi.org/10.1137/18m1193992

    Article  MathSciNet  MATH  Google Scholar 

  25. Chung, E.T., Kim, H.H., Widlund, O.B.: Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method. SIAM J. Numer. Anal. 51(1), 47–67 (2013) https://doi.org/10.1137/110849432

    Article  MathSciNet  MATH  Google Scholar 

  26. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998) https://doi.org/10.1137/s0036142997316712

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001) https://doi.org/10.1023/a:1012873910884

    Article  MathSciNet  MATH  Google Scholar 

  28. Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic hp-adaptivity. J. Sci. Comput. 17(1/2/3/4), 117–142 (2002) https://doi.org/10.1023/a:1015192312705

    Article  MathSciNet  MATH  Google Scholar 

  29. Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.T.: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations. Numer. Linear Algebra Appl. 13(9), 753–770 (2006) https://doi.org/10.1002/nla.504

    Article  MathSciNet  MATH  Google Scholar 

  30. Dryja, M., Widlund, O.B.: Some domain decomposition algorithms for elliptic problems. In: Kincaid, D.R., Hayes, L.J. (eds.) Iterative Methods for Large Linear Systems, pp. 273–291. Academic Press, New York (1990). https://doi.org/10.1016/B978-0-12-407475-0.50022-X

    Chapter  Google Scholar 

  31. Fehn, N., Wall, W.A., Kronbichler, M.: On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations. J. Comput. Phys. 351, 392–421 (2017) https://doi.org/10.1016/j.jcp.2017.09.031

    Article  MathSciNet  MATH  Google Scholar 

  32. Fortunato, D., Rycroft, C.H., Saye, R.: Efficient operator-coarsening multigrid schemes for local discontinuous Galerkin methods. SIAM J. Sci. Comput. 41(6), A3913–A3937 (2019) https://doi.org/10.1137/18m1206357

    Article  MathSciNet  MATH  Google Scholar 

  33. Gopalakrishnan, J., Kanschat, G.: A multilevel discontinuous Galerkin method. Numer. Math. 95(3), 527–550 (2003) https://doi.org/10.1007/s002110200392

    Article  MathSciNet  MATH  Google Scholar 

  34. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70(2), 163–180 (1995) https://doi.org/10.1007/s002110050115

    Article  MathSciNet  MATH  Google Scholar 

  35. Haut, T.S., Southworth, B.S., Maginot, P.G., Tomov, V.Z.: Diffusion synthetic acceleration preconditioning for discontinuous Galerkin discretizations of SN transport on high-order curved meshes. SIAM J. Sci. Comput. 42(5), B1271–B1301 (2020) https://doi.org/10.1137/19m124993x

    Article  MATH  Google Scholar 

  36. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002) https://doi.org/10.1016/s0168-9274(01)00115-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Houston, P., Schötzau, D., Wihler, T.P.: Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17(01), 33–62 (2007) https://doi.org/10.1142/s0218202507001826

    Article  MathSciNet  MATH  Google Scholar 

  38. Houston, P., Süli, E., Wihler, T.P.: A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs. IMA J. Numer. Anal. 28(2), 245–273 (2007) https://doi.org/10.1093/imanum/drm009

    Article  MathSciNet  MATH  Google Scholar 

  39. Kanschat, G.: Multilevel methods for discontinuous Galerkin FEM on locally refined meshes. Comput. Struct. 82(28), 2437–2445 (2004) https://doi.org/10.1016/j.compstruc.2004.04.015

    Article  Google Scholar 

  40. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003) https://doi.org/10.1137/s0036142902405217

    Article  MathSciNet  MATH  Google Scholar 

  41. Melenk, J., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: fast quadrature. Comput. Methods Appl. Mech. Eng. 190(32/33), 4339–4364 (2001) https://doi.org/10.1016/s0045-7825(00)00322-4

    Article  MATH  Google Scholar 

  42. MFEM: Modular Finite Element Methods [Software]. www.mfem.orghttps://doi.org/10.11578/dc.20171025.1248

  43. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37(1), 70–92 (1980) https://doi.org/10.1016/0021-9991(80)90005-4

    Article  MathSciNet  MATH  Google Scholar 

  44. Oswald, P.: On a BPX-preconditioner for P1 elements. Computing 51(2), 125–133 (1993) https://doi.org/10.1007/bf02243847

    Article  MathSciNet  MATH  Google Scholar 

  45. Pazner, W.: Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods. J. Sci. Comput. 42(5), A3055–A3083 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008) https://doi.org/10.1137/070685518

    Article  MathSciNet  MATH  Google Scholar 

  47. Pazner, W., Persson, P.-O.: Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods. J. Comput. Phys. 354, 344–369 (2018) https://doi.org/10.1016/j.jcp.2017.10.030

    Article  MathSciNet  MATH  Google Scholar 

  48. Perugia, I., Schötzau, D.: An hp-analysis of the local discontinuous Galerkin method for diffusion problems. J. Sci. Comput. 17(1/2/3/4), 561–571 (2002) https://doi.org/10.1023/a:1015118613130

    Article  MathSciNet  MATH  Google Scholar 

  49. Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205(2), 401–407 (2005) https://doi.org/10.1016/j.jcp.2004.11.017

    Article  MATH  Google Scholar 

  50. Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations. J. Comput. Phys. 222(1), 391–407 (2007). https://doi.org/10.1016/j.jcp.2006.07.029

    Article  MathSciNet  MATH  Google Scholar 

  51. Šolín, P., Červený, J., Doležel, I.: Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM. Math. Comput. Simul. 77(1), 117–132 (2008) https://doi.org/10.1016/j.matcom.2007.02.011

    Article  MathSciNet  MATH  Google Scholar 

  52. Szabó, B., Babuška, I.: Wiley Series in Computational Mechanics. Finite Element Analysis. Wiley, Amsterdam (1991)

    MATH  Google Scholar 

  53. Toselli, A., Widlund, O.B.: Domain Decomposition Methods-Algorithms and Theory. Springer Series in Computational Mathematics. Springer-Verlag, Berlin/Heidelberg (2005). https://doi.org/10.1007/b137868

    Article  MATH  Google Scholar 

  54. Wang, Z., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Meth. Fluids 72(8), 811–845 (2013) https://doi.org/10.1002/fld.3767

    Article  MathSciNet  MATH  Google Scholar 

  55. Wihler, T., Frauenfelder, P., Schwab, C.: Exponential convergence of the hp-DGFEM for diffusion problems. Comput. Math. Appl. 46(1), 183–205 (2003) https://doi.org/10.1016/s0898-1221(03)90088-5

    Article  MathSciNet  MATH  Google Scholar 

  56. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992) https://doi.org/10.1137/1034116

    Article  MathSciNet  MATH  Google Scholar 

  57. Xu, J.: The method of subspace corrections. J. Comput. Appl. Math. 128(1/2), 335–362 (2001) https://doi.org/10.1016/s0377-0427(00)00518-5

    Article  MathSciNet  MATH  Google Scholar 

  58. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15(03), 573–598 (2002) https://doi.org/10.1090/s0894-0347-02-00398-3

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhu, L., Giani, S., Houston, P., Schötzau, D.: Energy norm a posteriori error estimation for hp-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions. Math. Models Methods Appl. Sci. 21(02), 267–306 (2011) https://doi.org/10.1142/s0218202511005052

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhu, L., Schötzau, D.: A robust a posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations. IMA J. Numer. Anal. 31(3), 971–1005 (2010) https://doi.org/10.1093/imanum/drp038

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was partially supported by the LLNL-LDRD Program under Project No. 20-ERD-002 (LLNL-JRNL-814157). This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will Pazner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazner, W., Kolev, T. Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refinement. Commun. Appl. Math. Comput. 4, 697–727 (2022). https://doi.org/10.1007/s42967-021-00136-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00136-3

Keywords

Mathematics Subject Classification

Navigation