Skip to main content
Log in

New Finite Difference Mapped WENO Schemes with Increasingly High Order of Accuracy

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, a new type of finite difference mapped weighted essentially non-oscillatory (MWENO) schemes with unequal-sized stencils, such as the seventh-order and ninth-order versions, is constructed for solving hyperbolic conservation laws. For the purpose of designing increasingly high-order finite difference WENO schemes, the equal-sized stencils are becoming more and more wider. The more we use wider candidate stencils, the bigger the probability of discontinuities lies in all stencils. Therefore, one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some four-point or five-point stencils into several smaller three-point stencils. By the usage of this new methodology in high-order spatial reconstruction procedure, we get different degree polynomials defined on these unequal-sized stencils, and calculate the linear weights, smoothness indicators, and nonlinear weights as specified in Jiang and Shu (J. Comput. Phys. 126: 202228, 1996). Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions, another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights, so as to keep the optimal order of accuracy in smooth regions. These new MWENO schemes can also be applied to compute some extreme examples, such as the double rarefaction wave problem, the Sedov blast wave problem, and the Leblanc problem with a normal CFL number. Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.D.: Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228, 2480–2516 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bryson, S., Levy, D.: Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations. Appl. Numer. Math. 56, 1211–1224 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977–3014 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Casper, J.: Finite-volume implementation of high order essentially nonoscillatory schemes in two dimensions. AIAA J. 30, 2829–2835 (1992)

    MATH  Google Scholar 

  8. Casper, J., Atkins, H.L.: A finite-volume high order ENO scheme for two-dimensional hyperbolic systems. J. Comput. Phys. 106, 62–76 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Colella, P., Woodward, P.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    MATH  Google Scholar 

  11. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67, 1219–1246 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Feng, H., Hu, F.X., Wang, R.: A new mapped weighted essentially non-oscillatory scheme. J. Sci. Comput. 51, 449–473 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Fu, L., Hu, X.Y.Y., Adams, N.A.: A family of high order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Gao, Z., Don, W.S.: Mapped hybrid central-WENO finite difference scheme for detonation waves simulations. J. Sci. Comput. 55, 351–371 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Godunov, S.K.: A finite-difference scheme for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematicheskii Sbornik 47(3), 271–290 (1959)

    MATH  Google Scholar 

  16. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    MathSciNet  MATH  Google Scholar 

  17. Harten, A.: Preliminary results on the extension of ENO schemes to two-dimensional problems. In: Carasso, C. (ed.) Proceedings, International Conference on Nonlinear Hyperbolic Problems, Saint-Etienne, 1986. Lecture Notes in Mathematics, Springer-Verlag, Berlin (1987)

    Google Scholar 

  18. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–323 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Harten, A., Osher, S.: Uniformly high order accurate non-oscillatory schemes, IMRC Technical Summary Rept. 2823. Univ. of Wisconsin, Madison (1985)

    Google Scholar 

  20. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    MATH  Google Scholar 

  21. Hong, Z., Ye, Z., Meng, X.: A mapping-function-free WENO-M scheme with low computational cost. J. Comput. Phys. 405, 109145 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Hu, G., Li, R., Tang, T.: A robust WENO type finite volume solver for steady Euler equations on unstructured grids. Commun. Comput. Phys. 9, 627–648 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52(5), 2335–2355 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Korobeinikov, V.P.: Problems of Point-Blast Theory. American Institute of Physics, New York (1991)

  27. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    MathSciNet  MATH  Google Scholar 

  28. Leonard, B.P.: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput. Meth. Appl. Mech. Eng. 88, 17–74 (1991)

    MATH  Google Scholar 

  29. Leonard, B.P., Lock, A.P., MacVean, M.K.: The NIRVANA scheme applied to one-dimensional advection. Int. J. Num. Meth. Heat Fluid Flow 5, 341–377 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: M2AN 33, 547–571 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Linde, T., Roe, P.L.: Robust Euler codes. In: 13th Computational Fluid Dynamics Conference, AIAA-97-2098, AIAA Inc., Reno, Nevada (1997)

  33. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    MathSciNet  MATH  Google Scholar 

  34. Liu, Y., Zhang, Y.T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54, 603–621 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Qiu, J., Shu, C.-W.: On the construction, comparison, and local characteristic decomposition for high order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  38. Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66, 692–724 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Serna, S., Marquina, A.: Power-ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194, 632–658 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Serna, S., Qian, J.: Fifth order weighted power-ENO methods for Hamilton-Jacobi equations. J. Sci. Comput. 29, 57–81 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Shen, Y.Q., Yang, G.W.: Hybrid finite compact-WENO schemes for shock calculation. Int. J. Numer. Meth. Fluids 53, 531–560 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Shen, Y.Q., Zha, G.C.: A robust seventh-order WENO scheme and its applications. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-757, AIAA, Inc., Reno, Nevada (2008)

  43. Shi, J., Hu, C.Q., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    MATH  Google Scholar 

  44. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer-Verlag, Berlin, Heidelberg (1998)

  45. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  46. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

    MathSciNet  MATH  Google Scholar 

  47. Suresh, A., Huynh, H.T.: Accurate monotonicity preserving scheme with Runge-Kutta time stepping. J. Comput. Phys. 136, 83–99 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    MATH  Google Scholar 

  49. Wang, Z.J., Chen, R.F.: Optimized weighted essentially non-oscillatory schemes for linear waves with discontinuity. J. Comput. Phys. 174, 381–404 (2001)

    MATH  Google Scholar 

  50. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, Y.T., Shu, C.-W.: High order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, Y.T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high-order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: survey and new developments. Proc. R. Soc. A 467, 2752–2776 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Jun Zhu: Research was supported by the NSFC grant 11872210 and the Science Challenge Project, No. TZ2016002. The author was also partly supported by the NSFC Grant 11926103 when he visited Tianyuan Mathematical Center in Southeast China, Xiamen 361005, Fujian, China.

Jianxian Qiu: Research was supported by the NSFC Grant 12071392 and the Science Challenge Project, No. TZ2016002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Qiu, J. New Finite Difference Mapped WENO Schemes with Increasingly High Order of Accuracy. Commun. Appl. Math. Comput. 5, 64–96 (2023). https://doi.org/10.1007/s42967-021-00122-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-021-00122-9

Keywords

Mathematics Subject Classification

Navigation