Skip to main content
Log in

Adaptive Moving Mesh Central-Upwind Schemes for Hyperbolic System of PDEs: Applications to Compressible Euler Equations and Granular Hydrodynamics

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We introduce adaptive moving mesh central-upwind schemes for one- and two-dimensional hyperbolic systems of conservation and balance laws. The proposed methods consist of three steps. First, the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh. When the evolution step is complete, the grid points are redistributed according to the moving mesh differential equation. Finally, the evolved solution is projected onto the new mesh in a conservative manner. The resulting adaptive moving mesh methods are applied to the one- and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems. Our numerical results demonstrate that in both cases, the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Beckett, G., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35, 87–109 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Beljadid, A., Mohammadian, A., Kurganov, A.: Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Comput. Fluids 136, 193–206 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann problems in computational fluid dynamics, vol.11 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  4. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    MATH  Google Scholar 

  5. Berger, M.J., LeVeque, R.J.: Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35, 2298–2316 (1998). (electronic)

    MathSciNet  MATH  Google Scholar 

  6. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004)

    MATH  Google Scholar 

  8. Brilliantov, N.V., Pöschel, T.: Kinetic theory of granular gases, Oxford Graduate Texts. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  9. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint–Venant system, M2AN Math. Model. Numer. Anal. 45, 423–446 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Cao, W., Huang, W., Russell, R.: An \(r\)-adaptive finite element method based upon moving mesh PDEs. J. Comput. Phys. 149, 221–244 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Dewar, J., Kurganov, A., Leopold, M.: Pressure-based adaption indicator for compressible Euler equations. Numer. Methods Partial Diff. Equ. 31, 1844–1874 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Don, W.-S., Gao, Z., Li, P., Wen, X.: Hybrid compact-WENO finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38, A691–A711 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Dvinsky, A.S.: Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Fouxon, I., Meerson, B., Assaf, M., Livne, E.: Formation of density singularities in ideal hydrodynamics of freely cooling inelastic gases: a family of exact solutions. Phys. Fluids 19, 093303 (2007)

    MATH  Google Scholar 

  15. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118 of Applied Mathematical Sciences. Springer-Verlag, New York (1996)

    MATH  Google Scholar 

  16. Gottlieb, S., Shu, C., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001). (electronic)

    MathSciNet  MATH  Google Scholar 

  17. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011)

    MATH  Google Scholar 

  18. Guermond, J.-L., Popov, B.: Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. J. Comput. Phys. 321, 908–926 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Han, E., Li, J., Tang, H.: Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problems for compressible Euler equations. Commun. Comput. Phys. 10, 577–606 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods, vol. 174 of Applied Mathematical Sciences. Springer, New York (2011)

    Google Scholar 

  21. Huang, W., Sun, W.: Variational mesh adaptation. II. Error estimates and monitor functions. J. Comput. Phys. 184, 619–648 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Jin, C., Xu, K.: An adaptive grid method for two-dimensional viscous flows. J. Comput. Phys. 218, 68–81 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Jin, C., Xu, K.: A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation. J. Comput. Phys. 222, 155–175 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Karni, S., Kurganov, A., Petrova, G.: A smoothness indicator for adaptive algorithms for hyperbolic systems. J. Comput. Phys. 178, 323–341 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Kröner, D.: Numerical Schemes for Conservation Laws, Wiley–Teubner Series Advances in Numerical Mathematics. Wiley, Chichester (1997)

    Google Scholar 

  26. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Kurganov, A., Petrova, G.: Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Methods Partial Diff. Equ. 21, 536–552 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Kurganov, A., Tadmor, E.: New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Diff. Equ. 18, 584–608 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001). (electronic)

    MathSciNet  MATH  Google Scholar 

  31. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  32. LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modeling with adaptively refined finite volume methods. Acta Numer. 20, 211–289 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Li, P., Gao, Z., Don, W.-S., Xie, S.: Hybrid Fourier-continuation method and weighted essentially non-oscillatory finite difference scheme for hyperbolic conservation laws in a single-domain framework. J. Sci. Comput. 64, 670–695 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Luding, S.: Towards dense, realistic granular media in 2D. Nonlinearity 22, R101–R146 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Powell, K.G., Roe, P.L., Quirk, J.: Adaptive-mesh algorithms for computational fluid dynamics. In: Algorithmic Trends in Computational Fluid Dynamics, ICASE/NASA LaRC Ser, vol. 1993, pp. 303–337. Springer, New York (1991)

    Google Scholar 

  37. Puppo, G., Semplice, M.: Numerical entropy and adaptivity for finite volume schemes. Commun. Comput. Phys. 10, 1132–1160 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Rozanova, O.: Exact solutions with singularities to ideal hydrodynamics of inelastic gases. In: Hyperbolic Problems: Theory, Numerics, Applications, vol. 8 of AIMS Ser. Appl. Math., Am. Inst. Math. Sci. (AIMS), pp. 899–906. Springfield, MO (2014)

  39. Rozanova, O.: Formation of singularities in solutions to ideal hydrodynamics of freely cooling inelastic gases. Nonlinearity 25, 1547–1558 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Shirkhani, H., Mohammadian, A., Seidou, O., Kurganov, A.: A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids. Comput. Fluids 126, 25–40 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    MathSciNet  MATH  Google Scholar 

  42. Tang, H., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin, Heidelberg (2009)

    MATH  Google Scholar 

  44. Van Dam, A., Zegeling, P.A.: A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216, 526–546 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    MATH  Google Scholar 

  46. Winslow, A.: Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh. J. Comput. Phys. 1, 149–172 (1967)

    MathSciNet  MATH  Google Scholar 

  47. Xu, X., Ni, G., Jiang, S.: A high-order moving mesh kinetic scheme based on WENO reconstruction for compressible flows on unstructured meshes. J. Sci. Comput. 57, 278–299 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of A. Kurganov was supported in part by the National Natural Science Foundation of China grant 11771201 and by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design (No. 2019B030301001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kurganov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurganov, A., Qu, Z., Rozanova, O.S. et al. Adaptive Moving Mesh Central-Upwind Schemes for Hyperbolic System of PDEs: Applications to Compressible Euler Equations and Granular Hydrodynamics. Commun. Appl. Math. Comput. 3, 445–479 (2021). https://doi.org/10.1007/s42967-020-00082-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00082-6

Keywords

Mathematics Subject Classification

Navigation