Skip to main content
Log in

A Unified Petrov–Galerkin Spectral Method and Fast Solver for Distributed-Order Partial Differential Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

Fractional calculus and fractional-order modeling provide effective tools for modeling and simulation of anomalous diffusion with power-law scalings. In complex multi-fractal anomalous transport phenomena, distributed-order partial differential equations appear as tractable mathematical models, where the underlying derivative orders are distributed over a range of values, hence taking into account a wide range of multi-physics from ultraslow-to-standard-to-superdiffusion/wave dynamics. We develop a unified, fast, and stable Petrov–Galerkin spectral method for such models by employing Jacobi poly-fractonomials and Legendre polynomials as temporal and spatial basis/test functions, respectively. By defining the proper underlying distributed Sobolev spaces and their equivalent norms, we rigorously prove the well-posedness of the weak formulation, and thereby, we carry out the corresponding stability and error analysis. We finally provide several numerical simulations to study the performance and convergence of proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algorithms 75(1), 173–211 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., Glusa, C.: Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327, 4–35 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Ammi, M.R.S., Jamiai, I.: Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete Contin. Dyn. Syst. Ser. S 11(1), 103 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Ardakani, A.G.: Investigation of Brewster anomalies in one-dimensional disordered media having Lévy-type distribution. Eur. Phys. J. B 89(3), 76 (2016)

    Google Scholar 

  5. Armour, K.C., Marshall, J., Scott, J.R., Donohoe, A., Newsom, E.R.: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9(7), 549–554 (2016)

    Google Scholar 

  6. Bazhlekova, E., Bazhlekov, I.: Subordination approach to multi-term time-fractional diffusion-wave equations. J. Comput. Appl. Math. 339, 179–192 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

    Google Scholar 

  8. Chechkin, A., Gorenflo, R., Sokolov, I.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66(4), 046129 (2002)

    Google Scholar 

  9. Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Chen, S., Shen, J., Wang, L.L.: Laguerre functions and their applications to tempered fractional differential equations on infinite intervals. J. Sci. Comput. 74, 1–28 (2017)

    MathSciNet  Google Scholar 

  11. Cheng, A., Wang, H., Wang, K.: A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion. Numer. Methods Partial Differ. Equ. 31(1), 253–267 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Coronel-Escamilla, A., Gómez-Aguilar, J., Torres, L., Escobar-Jiménez, R.: A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A Stat. Mech. Appl. 491, 406–424 (2018)

    MathSciNet  Google Scholar 

  13. Duan, B., Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Space-time Petrov–Galerkin FEM for fractional diffusion problems. Comput. Methods Appl. Math. 18, 1 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Duan, J.S., Baleanu, D.: Steady periodic response for a vibration system with distributed order derivatives to periodic excitation. J. Vib. Control 21, 3124 (2018)

    MathSciNet  Google Scholar 

  15. Eab, C., Lim, S.: Fractional Langevin equations of distributed order. Phys. Rev. E 83(3), 031136 (2011)

    MathSciNet  Google Scholar 

  16. Edery, Y., Dror, I., Scher, H., Berkowitz, B.: Anomalous reactive transport in porous media: experiments and modeling. Phys. Rev. E 91(5), 052130 (2015)

    MathSciNet  Google Scholar 

  17. Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \({\mathbb{R}}_d\). Numer. Methods Partial Differ. Equ. 23(2), 256 (2007)

    MATH  Google Scholar 

  18. Fan, W., Liu, F.: A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl. Math. Lett. 77, 114–121 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Gorenflo, R., Luchko, Y., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Goychuk, I.: Anomalous transport of subdiffusing cargos by single kinesin motors: the role of mechano-chemical coupling and anharmonicity of tether. Phys. Biol. 12(1), 016,013 (2015)

    Google Scholar 

  21. Iwayama, T., Murakami, S., Watanabe, T.: Anomalous eddy viscosity for two-dimensional turbulence. Phys. Fluids 27(4), 045104 (2015). https://doi.org/10.1063/1.4916956

    Article  Google Scholar 

  22. Jin, B., Lazarov, R., Sheen, D., Zhou, Z.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19(1), 69–93 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Jin, B., Lazarov, R., Thomée, V., Zhou, Z.: On nonnegativity preservation in finite element methods for subdiffusion equations. Math. Comput. 86(307), 2239–2260 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Kharazmi, E., Zayernouri, M.: Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int. J. Comput. Math. 95(6/7), 1340–1361 (2018)

    MathSciNet  Google Scholar 

  25. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39(3), A1003–A1037 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512–536 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley-VCH, New York (2008)

    Google Scholar 

  28. Konjik, S., Oparnica, L., Zorica, D.: Distributed-order fractional constitutive stress-strain relation in wave propagation modeling. Zeitsch. Angew. Math. Phys. 70(2), 51 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Li, X., Rui, H.: Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations. Numer. Algorithms 79(4), 1107–1130 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Liao, Hl, Lyu, P., Vong, S., Zhao, Y.: Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer. Algorithms 75(4), 845–878 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12(4), 409–422 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Macías-Díaz, J.: An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Commun. Nonlinear Sci. Numer. Simul. 59, 67–87 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Maday, Y.: Analysis of spectral projectors in one-dimensional domains. Math. Comput. 55(192), 537–562 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Mainardi, F., Mura, A., Gorenflo, R., Stojanović, M.: The two forms of fractional relaxation of distributed order. J. Vib. Control 13(9/10), 1249–1268 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14(9/10), 1267–1290 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Mao, Z., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44, 1–27 (2017)

    MathSciNet  Google Scholar 

  40. Mashelkar, R., Marrucci, G.: Anomalous transport phenomena in rapid external flows of viscoelastic fluids. Rheol. Acta 19(4), 426–431 (1980)

    Google Scholar 

  41. Meerschaert, M.M.: Fractional Calculus, Anomalous Diffusion, and Probability. Fractional Dynamics: Recent Advances, pp. 265–284. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  42. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, vol. 43. Walter de Gruyter, Berlin (2012)

    MATH  Google Scholar 

  43. Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16(44), 24128–24164 (2014)

    Google Scholar 

  44. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Naghibolhosseini, M.: Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear. Ph.D. thesis, City University of New York, NY (2015)

  46. Naghibolhosseini, M., Long, G.R.: Fractional-order modelling and simulation of human ear. Int. J. Comput. Math. 95, 1–17 (2017)

    MathSciNet  Google Scholar 

  47. Perdikaris, P., Karniadakis, G.E.: Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42(5), 1012–1023 (2014)

    Google Scholar 

  48. Regner, B.M.: Randomness in biological transport. UC San Diego Electronic Theses and Dissertations, UC San Diego (2014)

  49. Samiee, M., Akhavan-Safaei, A., Zayernouri, M.: A fractional subgrid-scale model for turbulent flows: theoretical formulation and a priori study. arXiv:1909.09943 (2019)

  50. Samiee, M., Zayernouri, M., Meerschaert, M.M.: A unified spectral method for FPDES with two-sided derivatives; part I: a fast solver. J. Comput. Phys. 385, 225–243 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Samiee, M., Zayernouri, M., Meerschaert, M.M.: A unified spectral method for FPDES with two-sided derivatives; part II: stability, and error analysis. J. Comput. Phys. 385, 244–261 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer Science & Business Media, New York (2011)

    MATH  Google Scholar 

  53. Sokolov, I., Chechkin, A., Klafter, J.: Distributed-order fractional kinetics. arXiv preprint cond-mat/0401146 (2004)

  54. Suzuki, J., Zayernouri, M., Bittencourt, M., Karniadakis, G.: Fractional-order uniaxial visco-elasto-plastic models for structural analysis. Comput. Methods Appl. Mech. Eng. 308, 443–467 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Suzuki, J.L., Zayernouri, M.: An automated singularity-capturing scheme for fractional differential equations. arXiv:1810.12219 (2018)

  56. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Tomovski, Ž., Sandev, T.: Distributed-order wave equations with composite time fractional derivative. Int. J. Comput. Math. 95, 1–14 (2017)

    MathSciNet  MATH  Google Scholar 

  58. Tomovski, Ž., Sandev, T.: Distributed-order wave equations with composite time fractional derivative. Int. J. Comput. Math. 95(6/7), 1100–1113 (2018)

    MathSciNet  Google Scholar 

  59. Tyukhova, A., Dentz, M., Kinzelbach, W., Willmann, M.: Mechanisms of anomalous dispersion in flow through heterogeneous porous media. Phys. Rev. Fluids 1(7), 074,002 (2016)

    Google Scholar 

  60. Varghaei, P., Kharazmi, E., Suzuki, J.L., Zayernouri, M.: Vibration analysis of geometrically nonlinear and fractional viscoelastic cantilever beams. arXiv:1909.02142 (2019)

  61. Yamamoto, M.: Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations. J. Math. Anal. Appl. 460(1), 365–381 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Zaky, M.A.: A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn. 2667, 1–15 (2018)

    MATH  Google Scholar 

  63. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: Tempered fractional Sturm–Liouville eigenproblems. SIAM J. Sci. Comput. 37(4), A1777–A1800 (2015)

    MathSciNet  MATH  Google Scholar 

  64. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional PDES. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)

    MathSciNet  MATH  Google Scholar 

  65. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Zhang, Y., Meerschaert, M.M., Baeumer, B., LaBolle, E.M.: Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme. Water Resour. Res. 51(8), 6311–6337 (2015)

    Google Scholar 

  67. Zhang, Y., Meerschaert, M.M., Neupauer, R.M.: Backward fractional advection dispersion model for contaminant source prediction. Water Resour. Res. 52(4), 2462–2473 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Zayernouri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150), the MURI/ARO (W911NF- 15-1-0562), the National Science Foundation Award (DMS-1923201), and the ARO Young Investigator Program Award (W911NF-19-1-0444)

Appendix A Entries of Spatial Stiffness Matrix

Appendix A Entries of Spatial Stiffness Matrix

Here, we provide the computation of entries of the spatial stiffness matrix by performing an affine mapping \(\vartheta\) from the standard domain \(\mu ^\mathrm {{stn}}_j \in [-1,1]\) to \(\mu _j \in [\mu _j^{\max },\mu _j^{\min }]\).

Lemma A.1

The total spatial stiffness matrix \(S^{{\rm Tot}}_{j}\) is symmetric and its entries can be exactly computed as

$$\begin{aligned} S^{\, \mathrm {{Tot}}}_{j}=c_{l_j} \times S_{l}^{\varrho _j} + c_{r_j} \times S_{r}^{\varrho _j}-\kappa _{l_j} \times S_{l}^{\rho _j}-\kappa _{r_j} \times S_{r}^{\rho _j}, \end{aligned}$$
(A1)

where \(j=1,2,\cdots ,d\).

Proof

Regarding the definition of the stiffness matrix, we have

$$\begin{aligned} \{ S_{l}^{\varrho _j} \}_{r,n}&= \int _{-1}^{1} \int _{\mu _j^{\min }}^{\mu _j^{\max }} \varrho _j(\mu _j^{}) {}^{}_{-1}{\mathcal {D}}_{\xi _j}^{\mu _j^{}} \Big (\,\phi ^{}_n ( x_j ) \Big ) {}^{}_{\xi _j}{\mathcal {D}}_{1}^{\mu _j^{}} \Big (\varPhi ^{}_r ( x_j ) \Big ) \, {\text{d}}{x_j},\nonumber \\&= \beta _1 \int _{-1}^{1} \int _{-1}^{1} \varrho _j\big (\vartheta (\mu _j^{{\rm stn}})\big ) {}^{}_{-1}{\mathcal {D}}_{\xi _j}^{\mu _j^{{\rm stn}}} \Big (\, P_{n+1}({\xi _j}) - P_{n-1}({\xi _j}) \Big )\nonumber \\&\quad \times {}^{}_{{\xi }_j}{\mathcal {D}}_{1}^{\mu _j^{{\rm stn}}} \Big (\, P_{k+1}({\xi _j}) - P_{k-1}({\xi _j}) \Big ) \,{\text{d}}{\xi _j} ,\nonumber \\&= \beta _1 \Big (\,\widetilde{S}^{\, \varrho _j}_{r+1,n+1}-\widetilde{S}_{r+1,n-1}^{\, \varrho _j}-\widetilde{S}_{r-1,n+1}^{\, \varrho _j}+\widetilde{S}_{r-1,n-1}^{\, \varrho _j} \Big ), \quad \quad \end{aligned}$$
(A2)

where \(\beta _1= {\widetilde{\sigma }}_r\,\sigma _n \, \Big (\frac{\mu _j^{\max }-\mu _j^{\min }}{2}\Big )\) and

$$\begin{aligned} \widetilde{S}_{r,n}^{\varrho _j}&= \,\int _{-1}^{1}\int _{-1}^{1} \varrho _j\big (\vartheta (\mu _j^{{\rm stn}})\big ) {}^{}_{-1}{\mathcal {D}}_{\xi _j}^{\mu _j^{{\rm stn}}} \Big (\, P_{n} (\xi _j) \Big ) {}^{}_{\xi _j}{\mathcal {D}}_{1}^{\mu _j^{{\rm stn}}} \Big (\, P_{r} (\xi _j) \Big ) \, {\text {d}}{\xi _j} \, {\text {d}}\mu _j^{{\rm stn}} \\&= \int _{-1}^{1} \varrho _j\big ( \vartheta (\mu _j^{{\rm stn}})\big )\, \frac{\Gamma (r+1)}{\Gamma (r-\mu _j^{{\rm stn}}+1)}\, \frac{\Gamma (n+1)}{\Gamma (n-\mu _j^{{\rm stn}}+1)} \,\\&\quad \times \int _{-1}^{1} {(1-\xi _j^2)}^{-\mu _j^{{\rm stn}}} \, P^{ -\mu _j^{{\rm stn}},\mu _j^{{\rm stn}}}_{r} \, P^{ \mu _j^{{\rm stn}},-\mu _j^{{\rm stn}}}_{n} {\text {d}}{\xi _j}\, {\text {d}}\mu _j^{{\rm stn}}. \end{aligned}$$

\(\widetilde{S}_{r,n}^{\varrho _j}\) can be computed accurately using Gauss–Legendre (GL) quadrature rules as

$$\begin{aligned} \widetilde{S}_{r,n}^{\varrho _j^{stn}}&= \sum _{q=1}^{Q} \frac{\Gamma (r+1)}{\Gamma (r-\mu _j^{stn}|_{q}+1)} \frac{\Gamma (n+1)}{\Gamma (n-\mu _j^{stn}|_{q}+1)} \varrho _j|_{q}\, w_q \, \nonumber \\& \quad \times\int _{-1}^{1} {(1-\xi _j^2)}^{-\mu _j^{stn}|_{q}} \, P^{ -\mu _j^{stn}|_{q},\mu _j^{stn}|_{q}}_{r}(\xi _j) \, P^{ \mu _j^{stn}|_{q},-\mu _j^{stn}|_{q}}_{n}(\xi _j) {\text{d}}{\xi _j}, \quad \end{aligned}$$
(A3)

in which \(\mathcal {Q} \geqslant {\mathcal {M}}_j +2\) represents the minimum number of GL quadrature points \(\{\mu _j^{stn}|_{q}\}_{q=1}^{\mathcal {Q}}\) for exact quadrature, and \(\{w_q\}_{q=1}^{Q}\) are the corresponding quadrature weights. Exploiting the property of the Jacobi polynomials where \(P^{\alpha , \beta }_n(-\xi _j) = (-1)^n P^{ \beta ,\alpha }_n(\xi _j)\), we have \(\widetilde{S}_{r,n}^{\, \varrho _j^{{\rm stn}}}=(-1)^{(r+n)}\,\widetilde{S}_{n,r}^{\, \varrho _j^{{\rm stn}}}\). Following [50], \({\widetilde{\sigma }}_r\) and \(\sigma _n\) are chosen, such that \((-1)^{(n+r)}\) is canceled. Accordingly, \(\{ S_{l}^{\varrho _j}\}_{n,r}=\{S_{l}^{\varrho _j}\}_{r,n}=\{ S_{r}^{\varrho _j}\}_{r,n}=\{S_{r}^{\varrho _j}\}_{r,n}\) due to the symmetry of \(S_{l}^{\varrho _j}\) and \(S_{r}^{\varrho _j}\). Similarly, we get \(\{S_{l}^{\rho _j}\}_{n,r}=\{ S_{l}^{\rho _j}\}_{r,n}=\{ S_{r}^{\rho _j}\}_{n,r}=\{ S_{r}^{\rho _j}\}_{r,n}\). Eventually, we conclude that the stiffness matrix \(S^{\, \varrho _j}_{l}\), \(S^{\, \varrho _j}_{r}\), \(S^{\, \rho _j}_{l}\), \(S^{\, \rho _j}_{r}\), and thereby \(\{S^\mathrm {{Tot}}_{j}\}_{n,r}\) as the sum of symmetric matrices is symmetric. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiee, M., Kharazmi, E., Meerschaert, M.M. et al. A Unified Petrov–Galerkin Spectral Method and Fast Solver for Distributed-Order Partial Differential Equations. Commun. Appl. Math. Comput. 3, 61–90 (2021). https://doi.org/10.1007/s42967-020-00070-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00070-w

Keywords

Mathematics Subject Classification

Navigation