Skip to main content

Advertisement

Log in

Ecological niche modelling of Tecomella undulata (Sm.) Seem: an endangered (A2a) tree species from arid and semi-arid environment imparts multiple ecosystem services

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

The objective of this study was to utilize niche modelling techniques and predictors, including bioclimatic, soil, habitat heterogeneity indices, and land-use land cover (LULC), to ascertain the present and potential distribution of Tecomella undulata in India. The bio-climatic variables of 2050 and 2070 timeframes were employed to forecast future occurrences. The study also examined the level of indigeneity of T. undulata and analysed the factors that impact its fundamental and realized niche. The Maxent model utilized for forecasting the distribution of T. undulata demonstrated a high level of precision, incorporating both bioclimatic and non-bioclimatic variables. The study highlights the significance of mean and maximum temperatures during the warmest quarter and month, as well as the wettest months and years’ worth of precipitation. In addition, threshold values for these predictors were calculated. In contrast to the limiting effects of climatic factors, the species in question was found to exhibit a greater degree of facilitation in response to soil conditions (including rooting conditions, nutrient availability, and salt excess), habitat heterogeneity indices (such as range, maximum, and coefficient of variance of diversity), and lLULC predictors (including urban areas, residential and infrastructure development, forested regions, and sparsely vegetated areas). As a result, this species was able to expand its range across a wider expanse of India. The Churu and Jhunjhunu districts and a transact region including Pali, Jalor, Jodhpur, Sanchor, and Barmer have been identified as the best possible locations for its occurrences. Shrinkage would begin around 2050 in all of these areas. By 2070, the Churu and Jhunjhunu regions had become significantly more fragmented, while the Jodhpur region and the surrounding areas of Barmer, Sanchor, Jalor, and Vav had grown. Specific coordinates were also identified pertains to zone of extinction, zone of re-occurrence and zone of maximum occurrence. The aforementioned discoveries enable us to ascertain the extent of land that is conducive to the growth of T. undulata across diverse ecological niches, as well as the underlying factors and critical points that impact its dispersion dynamics both presently and prospectively. This shall aid us in determining the necessity of extensive captive cultivation for the preservation of the species and its consequential ecological advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data sets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ab Lah NZ, Yusop Z, Hashim M, Mohd Salim J, Numata S (2021) Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests 12:1449

    Article  Google Scholar 

  • Adhikari D, Reshi DBK, Samant SS, Chettri A, Upadhaya K, Shah MA, Singh PP, Tiwary R, Majumdar K, Pradhan A, Thakur ML, Salam N, Zahoor Z, Mir MH, Kaloo ZA, Barik SK (2018) Inventory and characterization of new populations through ecological niche modelling improve threat assessment. Curr Sci 114(3):519–531

    Article  Google Scholar 

  • Ahmad R, Khuroo AA, Hamid M, Charles B, Rashid I (2019) Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers Conserv 28(8–9): 2319–2344. https://doi.org/10.1007/s10531-019-01775-y

  • Amiri I, Sodaiezade H, Arani AM, Semiromi JT, Hakimazade MA (2019) Autecology of Tecomella undulata (Roxb.) Seem. in Southern Iran. Iran J For Poplar Res 26 (4): https://doi.org/10.22092/ijfpr.2018.118581

  • Arajo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

  • Arshad F, Waheed M, Fatima K, Harun N, Iqbal M, Fatima K, Umbreen S (2022) Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (Sm.) Seem. in Pakistan. Sustainability 14:7215. https://doi.org/10.3390/su14127215

  • Arya HC, Shekhawat NS (1986) Clonal multiplication of tree species in the Thar desert, India through tissue culture. Fores Ecol Manag 16:201–208

    Article  CAS  Google Scholar 

  • Arya S, Toky OP, Harris SM, Harris PJC (1992) Tecomella undulata (Rohira): a valuable tree of the thar desert. Int Tree Crops J 7:141–147

    Article  Google Scholar 

  • Bajocco S, Ceccarelli T, Smiraglia D, Salvati L, Ricotta C (2015) Modeling the ecological niche of long-term land use changes: the role of biophysical factors. Ecol Indic 60:231–236. https://doi.org/10.1016/j.ecolind.2015.06.034

    Article  Google Scholar 

  • Bania A, Sheoran V (2021) Re-vegetation at restored disturbed mining area of Giral mines, Barmer, Rajasthan, India. Bull Environ Pharmacol Life Sci 10(6):174–181

    Google Scholar 

  • Bhansali RR (1993) Bud culture for shoot multiplication and plantlet formation of Tecomella undulata (Rohida) a wood tree of arid zone. Trop Sci 33:1–8

    Google Scholar 

  • Bhau BS, Negi MS, Jindal SK, Singh M, Lakshmikumaran M (2007) Assessing genetic diversity of Tecomella undulata (Sm.)—an endangered tree species using amplified fragment length polymorphisms-based molecular markers. Curr Sci 93(1): 67–72

  • Boral D, Moktan S (2021) Predictive distribution modelling of Swertia bimaculata in Darjeeling-Sikkim eastern Himalaya using MaxEnt: current and future scenarios. Ecol Process 10:26. https://doi.org/10.1186/s13717-021-00294-5

    Article  Google Scholar 

  • Cao Z, Zhang L, Zhang X, Guo Z (2021) Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on maxent model. Sustainability 13(20):11253. https://doi.org/10.3390/su132011253

    Article  Google Scholar 

  • CAZRI (2021) Annual Report (2021). ICAR-Central Arid Zone Research Institute, Jodhpur, p 223

    Google Scholar 

  • Chandra N, Singh G, Lingwal S, Bisht MPS, Tiwari LM (2021) Population assessment and habitat distribution modelling of the threatened medicinal plant Picrorhiza kurroa Royle ex Benth. in the Kumaun Himalaya, India. J Threat Taxa 13:18868–18877. https://doi.org/10.11609/jott.5603.13.7.18868-18877

  • Chauvier Y, Thuiller W, Brun P, Lavergne S, Descombes P, Karger DN, Renaud J, Zimmermann NE (2021) Influence of climate, soil and land cover on plant species distribution in the European Alps. Ecol Monogr 91 (2):e01433. https://doi.org/10.1002/ecm.1433

  • Chhajer S, Jukanti AK, Bhatt RK, Kalia R (2018) Genetic diversity studies in endangered desert teak [Tecomella undulata (Sm) Seem] using arbitrary (RAPD), semi-arbitrary (ISSR) and sequence based (nuclear rDNA) markers. Trees 32:1083–1101. https://doi.org/10.1007/s00468-018-1697-9

    Article  Google Scholar 

  • Coban HO, Orucu OK, Arslan ES (2020) MaxEnt modelling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability 12(7):2671. https://doi.org/10.3390/su12072671

  • Daneva V, Verma S, Beniwal RS (2020) Performance of different locality variable samples of Tecomella undulata (Sm.) Seem. Under controlled environmental conditions. Pharma Innov J 9(9):354–357

  • Dauby G, Stevart T, Droissart V, Cosiaux A, Deblauwe V, Simo-Droissart M, Sosef MSM, Porter P, George E, Gereau RE, Couvreur TLP (2017) ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol Eval 7(24):11291–11303

    Google Scholar 

  • Dhir R, Shekhawat GS (2012) Critical review on Tecomella undulata: a medicinally potent endangered plant species of Indian Thar desert. Int J Curr Res 4(6):36–44

    Google Scholar 

  • Dhyani A, Kadaverugu R, Nautiyal BP, Nautiyal MC (2021) Predicting the potential distribution of a critically endangered medicinal plant Lilium polyphyllum in Indian Western Himalayan region. Reg Environ Chang 21:30. https://doi.org/10.1007/s10113-021-01763-5

    Article  Google Scholar 

  • Dutta BK, Tewari JC, Bohra MD (1997) Note on effect of nitrogen and phosphorus fertilizer on early growth of four arid zone tree species. Curr Agric 21:123–124

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  ADS  Google Scholar 

  • FAO (2012) Global Agro-ecological Zones (GAEZ v 3.0). FAO, Rome, p 186

  • Fischer G, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D (2008) Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome. https://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/harmonized-world-soil-database-v12/en

  • Franklin J (2013) Species distribution models in conservation biogeography: developments and challenges. Divers Distrib 19:1217–1223

    Article  Google Scholar 

  • Gao T, Xu Q, Liu Y, Zhao J, Shi J (2021) Predicting the potential geographic distribution of Sirex nitobei in China under climate change using maximum entropy model. Forest 12(2):151. https://doi.org/10.3390/f12020151

    Article  Google Scholar 

  • GBIF.org (2022) GBIF occurrence. https://doi.org/10.15468/dl.g2qa9n

  • Goyal R, Sharma PL, Singh M (2010) Pharmacological potential of Tecomella undulata in acute and chronic inflammation in rats. Int J Pharm Sci Res 1:108–114

    Google Scholar 

  • Gupta GN, Bala N, Choudhary R (1996) Growth and biomass production of Tecomella undulata as affected by rain water harvesting and conservation practices in arid zone. Int Tree Crops J 8(2–3):163–176. https://doi.org/10.1080/01435698.1995.9752942

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) Past: Paleontological statistics software package for education and data analysis. Palaentol Electron 4(1):1–9

    Google Scholar 

  • Hefley TJ, Baasch DM, Tyre AJ (2014) Blankenship, E.E. Correction of location errors for presence-only species distribution models. Methods Ecol Evol 5:207–214

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19

    Google Scholar 

  • Hussain Mir A, Tyub S, Kamili AN (2020) Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya. Saudi J Biol Sci 27:2380–2389. https://doi.org/10.1016/j.sjbs.2020.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  • IUCN (2021) The IUCN red list of threatened species. Version 2021–2. www.iucnredlist.org. Accessed 04 Sept 2021.

  • Jindal SK, Bhansali RR (1997) Effect of plant growth regulators and extracts of abnormal growths on seed germination and seedling characteristics of rohida (Tecomella undulata (Sm.) Seem.). Curr Agric 21:97–100

    Google Scholar 

  • Jindal SK, Solanki KR, Kacker ML (1985) Phenology and breeding systems of Rohida (Tecomel/a undulata (Sm.) Seem). Indian J Fores 8:317–320

    Google Scholar 

  • Jindal SK, Kackar ML, Solanki RR (1987) Germplasm collection and genetic variability in Rohira (Tecomella undulata (Sm.) Seem. in Western Rajasthan. Indian J Fores 10:52–55

    Google Scholar 

  • Jindal SK, Solanki KR, Kackar NL (1990) Effect of seed storage and fruit ripening on germination and seedling characteristics in Tecomella undulata. Myforest 26:59–62

    Google Scholar 

  • Jindal SK, Singh DV, Moharana PC, Patel N (2009) Annual report. ICAR-Central Arid Zone Research Institute, Jodhpur, p 156

    Google Scholar 

  • Jindal SK, Singh DV, Moharana PC, Patel N (2010) Annual report. ICAR-Central Arid Zone Research Institute, Jodhpur, p 174

    Google Scholar 

  • Joshi M, Charles B, Ravikanth G, Aravind NA (2017) Assigning conservation value and identifying hotspots of endemic rattan diversity in the Western Ghats, India. Plant Divers 39(5):263–272. https://doi.org/10.1016/j.pld.2017.08.002

  • Kalia RK, Rai MK, Sharma R, Bhatt RK (2014) Understanding Tecomella undulata: an endangered pharmaceutically important timber species of hot arid regions. Genet Resour Crop Eval 61:1397–1421

    Article  Google Scholar 

  • Kar A, Garg B, Singh M, Kathju S (2009) Trends in arid zone research in India. Central Arid Zone Research Institute, Jodhpur, p 29

  • Karami P, Rezaei S, Shadloo S et al (2020) An evaluation of central Iran's protected areas under different climate change scenarios (a case on Markazi and Hamedan provinces). J Mt Sci 17:68–82. https://doi.org/10.1007/s11629-019-5418-7

  • Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecol Evol 9:1151–1156. https://doi.org/10.1111/2041-210X.12945

    Article  Google Scholar 

  • Kass JM, Meenan SI, Tinoco N, Burneo SF, Anderson RP (2021) Improving area of occupancy estimates for parapatric species using distribution models and support vector machines. Ecol Appl 31(1):1–15

    Article  Google Scholar 

  • Kumar S (2018) Provenance variation in growth parameter of Tecomella undulata (Smith) Seemann under field conditions in arid India. Int J Pure Appl Biosci 6(2):213–217

    Google Scholar 

  • Kumar S, Kumar P (2014) Rehabilitation of lignite mine spoils in the India arid zone-an ecological approach. Ann Arid Zone 53(3 & 4):232–136

    Google Scholar 

  • Kumar P, Sarthi PP (2021) Intra-seasonal variability of Indian summer monsoon rainfall in CMIP6 models simulation. Theor Appl Climatol 145:687–702. https://doi.org/10.1007/s00704-021-03661-6

    Article  ADS  Google Scholar 

  • Kumar S, Stohlgren TJ (2009) MaxEnt modelling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98

    Google Scholar 

  • Kumar S, Stohlgren TJ, Chong GW (2006) Spatial heterogeneity influences native and non-native plant species richness. Ecology 87:3186–3199

    Article  PubMed  Google Scholar 

  • Kumar A, Ram H, Sharma SK, Rama Rao S (2008) Comparative meiotic chromosome studies in nine accessions of Tecomella undulata (Sm.) Seem, threatened tree of Indian desert. Silvae Genet 57(6):301–306

  • Kumar S, Kumar P, Agrawal DK, Choudhary AK (2011) Rehabilitation of lignite mine backfill with indigenous desert tree, Tecomella undulata in Indian arid zone. J Trop Fores 27:17–28

    Google Scholar 

  • Kumar P, Bangarwa KS, Johar V (2018) Phenology behaviour and reproductive biology of Tecomella undulate. Ecol Environ Conserv 23(3):413–417

    Google Scholar 

  • Kumar A, Kumar A, Dibyendu A, Ravikanth G, Purabi S, Khan L (2020) Ecological Niche Modelling for assessing potential distribution of Pterocarpus marsupium Roxb in Ranchi, Eastern India. Ecol Res 35(6):1095–1105. https://doi.org/10.1111/1440-1703.12176

  • Kumawat R, Sharma S, Kumar S (2012) An overview for various aspects of multifaceted, health care Tecomella undulate Seem. plant. Acta Pol Pharm 69(5):993–996

    PubMed  CAS  Google Scholar 

  • Loke LHL, Chisholm RA (2022) Measuring habitat complexity and spatial heterogeneity in ecology. Ecol Lett 25:2269–2288

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma B, Sun J (2018) Predicting the distribution of Stipa purpurea across the Tibetan Plateau via MaxEnt model. BMC Ecol 18:10. https://doi.org/10.1186/s12898-018-0165-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Marco P, Villen S, Mendes P, Noberga C, Cortes L, Castro T, Souza R (2018) Vulnerability of cerrado threatened mammals: an integrative landscape and climate modelling approach. Biodivers Conserv 29:1637–1658. https://doi.org/10.1007/s10531-018-1615-x

    Article  Google Scholar 

  • Mathur P, Mathur M (2023) Machine learning ensemble species distribution modelling of an endangered arid land tree Tecomella undulate: a global appraisal. Arab J Geosci 16:131

    Article  Google Scholar 

  • Mathur M, Sundarmoorthy S (2013) Inter-specific association of herbaceous vegetation in semi-arid thar desert, India. Range Manag Agrofor 34(1):26–32

    Google Scholar 

  • Mathur M, Sundaramoorthy S (2019) Woody perennial diversity at various land forms of the five agro-climatic zones of Rajasthan, India. In: Ramawat K (eds) Biodiversity and chemotaxonomy. Sustainable development and biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_5

  • Mathur M, Mathur P, Purohit H (2023) Ecological niche modelling of a critically endangered species Commiphora wightii (Arn.) Bhandari using bioclimatic and non-bioclimatic variables. Ecol Process 12:8. https://doi.org/10.1186/s13717-023-00423-2

    Article  Google Scholar 

  • Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Nauelsd A, Bauer N, Canadell JG, Daniel JS, John A, Krummel PB, Luderer G, Meinshausen N, Montzka SA, Rayner PJ, Reimann S, Smith SJ, Berg MVD, Velders GJM, Vollmer MK, Wang RHJ (2020) The shared socio-economic pathway (SSP) greenhouse gas concentration and their extension to 2500. Geosci Model Dev 13:3571–3605. https://doi.org/10.5194/gmd-13-3571-2020

    Article  ADS  CAS  Google Scholar 

  • Mishra SN, Kumar D, Kumar B, Tiwari S (2021) Assessing impact of varying climatic conditions on distribution of Buchanania cochinchinensis in Jharkhand using species distribution modeling approach. Curr Res Environ Sustain 3:100025. https://doi.org/10.1016/j.crsust.2021.100025

    Article  Google Scholar 

  • Mohsenzadeh S, Tayyebi NS, da Silva JA (2012) Allelopathic potential of Tecomella undulate (Roxb.) seem. Med Aromat Plant Sci Biotechnol 6(1):75–77

    Google Scholar 

  • Mousazade M, Ghanbarian G, Pourghasemi HR, Safaeian R, Cerda A (2019) Maxent data mining technique and its comparison with a bvariate statistical model for predicting the potential distribution of Astragalus fasciculifolius Boiss. In Fars, Iran. Sustainability 11:3452. https://doi.org/10.3390/su11123452

    Article  Google Scholar 

  • Nagaraju KS, Ravikanth G, Narayani B, Ghazoul J, Ganeshaiah KN, UmaShaanker R (2013) Do ecological niche model predictions reflect the adaptive landscape of species?: a test using Myristica malabarica Lam., an endemic tree in the Western Ghats, India. PLoS ONE 8(11):e82066. https://doi.org/10.1371/journal.pone.0082066

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Negi RS, Sharma MK, Sharma KC, Kshetrapal S, Kothari SL, Trivedi PC (2011) Genetic diversity and variation in the endangered tree (Tecomella undulata) in Rajasthan. Indian J Fundam Appl Life Sci 1(1):50–58

    Google Scholar 

  • Nunez-Penichet C, Cobos ME, Soberon J (2021) Non-overlapping climatic niches and biogeographic barriers explain disjunct distributions of continental Urania moths. Front Biogeogr 13(2):e52142

    Article  Google Scholar 

  • Osorio-Olivera L, Lira- Noriega A, Soberon J, Townsend PA, Facon M, Contreas Diaz RG, Martinez-Meyer E, Barve V, Barve N (2020) Ntbox: an R package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol Evol 11:1199–1206. https://doi.org/10.1111/2041-210X.13452. https://github.com/luismurao/ntbox

  • Padalia H, Srivastava V, Kushwaha SPS (2014) Modelling potential invasion range of alien invasion species, Hyptis suaveolens (L) in India: comparison of MaxEnt and GARP. Ecol Inf 22:36–43

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modelling of species distribution with Maxent: new extensions and a comprehensive evaluation. Ecography 31:165–175

    Article  ADS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distribution. Ecol Model 190(304):231–259

    Article  Google Scholar 

  • Plummer J (2021) Tecomella undulata. The IUCN red list of threatened species 2021: e.T137731325A169300279. https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T137731325A169300279.en. Accessed 02 Aug 2022

  • Pownitha KV, Hulegaru-Nagaraja PB, Charles B, Vasideva R, Aravind NA, Ravikanth G (2022) Ecological niche modelling to identify suitable sites for cultivation of two important medicinal lianas of the Western Ghats, India. Trop Ecol 63:423–432. https://doi.org/10.1007/s42965-021-00207-9

    Article  Google Scholar 

  • Pradhan P (2016) Strengthening maxent modeling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8(5):29–34

    Google Scholar 

  • Rathore P, Roy A, Karnatak H (2022) Predicting the future of species assemblages under climate and land use land cover changes in Himalaya: a geospatial modelling approach. Clim Change Ecol 3:100048. https://doi.org/10.1016/j.ecochg.2022.100048

    Article  Google Scholar 

  • Rawat N, Purohit S, Painuly V, Negi GS, Bisht MPS (2022) Habitat distribution modelling of endangered medicinal plants Picrohiza kurroa (Rolye ex Benth) under climate change scenarios in Uttarakhand Himalaya, India. Ecol Inf 68:101550. https://doi.org/10.1016/j.ecoinf.2021.101550

    Article  Google Scholar 

  • Rezanejad F, Hakemi FG (2017) Studies of pollen characteristic in plants of fruitless of Tecomella undulata (Sm.) Seem. (Bignoniaceae) in Golparaki region of Jiroft city, Iran. Iran J Sci Technol Trans Sci 41:979–988. https://doi.org/10.1007/s40995-017-0338-2

  • Sarikaya O, Karaceylan IB, Sen I (2018) Maximum entropy modelling (maxent) of current and future distributions of Ips mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. App Ecol Environ Res 16:2527–2535

    Article  Google Scholar 

  • Sen S, Gode A, Ramanujam S, Ravikanth G, Aravind NA (2016) Modelling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models. J Plant Res 129(6):1033–1040. https://doi.org/10.1007/s10265-016-0859

    Article  PubMed  Google Scholar 

  • Sérgio C, Figueira R, Draper D, Menezes R, Sousa AJ (2007) Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biol Conserv 135:341–351

    Article  Google Scholar 

  • Shankhwar R, Bhandari MS, Meena RK, Shekhar C, Pandey VV, Saxena J, Kant R, Barthwal S, Naithani HB, Pandey S, Pandey A, Ginwal HS (2019) Potential eco-distribution mapping of Myrica esculenta in north-western Himalayas. Ecol Eng 128:98–111. https://doi.org/10.1016/j.ecoleng.2019.01.003

    Article  Google Scholar 

  • Sharma B, Baruah PS, Tanti B (2018) Habitat distribution modelling for reintroduction and conservation of Aristolochia indica L.—a threatened medicinal plant in Assam. J Threat Taxa 10(11):12531–12537. https://doi.org/10.11609/jott.3600.10.11

    Article  Google Scholar 

  • Singh AK (2004) Endangered economic species of Indian desert. Genet Resour Crop Evol 51:371–380

    Article  Google Scholar 

  • Singh G (2009) Comparative productivity of Prosopis cineraria and Tecomella undulata based agroforestry systems in degraded lands of Indian Desert. J For Res 20(2):144–150

    Article  CAS  Google Scholar 

  • Singh G, Bala N, Mutha S, Rathod TR, Limba NK (2004) Biomass production of Tecomella undulata agroforestry systems in arid India. Biol Agric Hortic Int J Sustain Prod Syst 22:205–216. https://doi.org/10.1080/01448765.2004.9755286

    Article  Google Scholar 

  • Singh VK, Barman C, Tandon R (2014) Nector robbing positively influences the reproductive success of Tecomella undulata (Bignoniaceae). PLoS ONE 9(7):e102607. https://doi.org/10.1371/journal.pone.0102607

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Smeraldo S, Bosso L, Salinas-Ramos VB, Ancillotto L, Sánchez-Cordero V, Gazaryan S, Russo D (2021) Generalists yet different: Distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mammal Rev 51:571–584

    Article  Google Scholar 

  • Sohel SI, Akhter S, Ullah H, Haque E, Rana P (2016) Predicting impacts of climate change on forest tree species of Bangladesh: evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae). iForest - Biogeosci Fores 10:154–160. https://doi.org/10.3832/ifor1608-009

    Article  Google Scholar 

  • Sun C, Zuo J, Shi X, Liu X, Liu H (2021) Diverse inter-annual variations of winter Siberian high and link with Eurasian snow in observation and BCC-CSM2-MR coupled model simulation. Front Earth Sci 9:1103

    Article  ADS  Google Scholar 

  • Tareen RB, Bibi T, Khan MA, Ahmad M, Zafar M (2010) Indigenous knowledge of folk medicine by the women of Kalat and Khuzdar regions of Balochistan, Pakistan. Pak J Bot 42:1465–1485

    Google Scholar 

  • Tasser E, Leitinger G, Tappeiner U (2017) Climate change versus land-use change—what affects the mountain landscapes more? Land Use Policy 60:60–72

    Article  Google Scholar 

  • Tewari VP (2007) Comparing the model forms estimating generalised diameter-height relationships in Tecomella undulata plantations in hot arid region of India. J For Res 18(4):255–260. https://doi.org/10.1007/s11676-007-0052-6

    Article  Google Scholar 

  • Tewari VP, Singh M (2006) Tree-crop interaction in the thar desert of Rajasthan (India). Secheresse 17(1–2):326–332

    Google Scholar 

  • Tittensor DP, Baco AR, Brewin PE, Clark MR, Consalvey M, Hall-Spencer J, Rowden AA, Schlacher T, Stocks KI, Rogers AD (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeogr 36:1111–1128

    Article  Google Scholar 

  • Tripathi JPM, Jaimini SN (2002) Floral and reproductive biology of Rohida (Tecomella undulata (Sm.) Seem.). Indian J Fores 25:341–343

    Google Scholar 

  • Tuanmu MN, Jetz W (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob Ecol Biogeogr 24:1329–1339. https://doi.org/10.1111/geb.12365

    Article  Google Scholar 

  • Tyagi H, Tomar UK (2013) Factors affecting in vitro shoot proliferation and rooting of mature Tecomella undulata (Sm.) Seem tree. Res Plant Sci 1(2):38–44

    Google Scholar 

  • UNEP-WCMC and IUCN (2020) Protected planet: the world database on protected areas (WDPA). The global database on protected areas management effectiveness (GD-PAME)] [On-line]. UNEP-WCMC and IUCN, Cambridge. https://www.protectedplanet.net/

  • Upadhyaya A (1991) Shelterbelt plantations effectively check sand deposition in Indira Gandhi Canal. Indian Fores 117:511–514

    Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol Int J Org Evol 62:2868–2883

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Article  ADS  Google Scholar 

  • Wei BO, Wang R, Hou K, Wang X, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L using Maxent model under climate change in China. Glob Ecol Conserv 16:e00477. https://doi.org/10.1016/j.gecco.2018.e00477

    Article  Google Scholar 

  • Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, Wei M, Huang A, Zhang Y, Liu X (2019) The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600. https://doi.org/10.5194/gmd-12-1573-2019

    Article  ADS  Google Scholar 

  • Xu W, Jin J, Cheng J (2021) Predicting the potential geographic distribution and habitat suitability of two economic forest trees on the Loess Plateau, China. Forests 12:747

    Article  Google Scholar 

  • Zhang Y, Liu X, Chen G, Hu G (2020) Simulation of urban expansion based on cellular automata and maximum entropy model. Sci China Earth Sci 63:701–712

    Article  ADS  Google Scholar 

  • Zhang Y, Tang J, Ren G, Zhao K, Wang X (2021) Global potential distribution prediction of Xanthium italicum based on maxent model. Sci Rep 11:16545. https://doi.org/10.1038/s41598-021-96041-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Cui X, Sun J, Li T, Wang Q, Ye X, Fan B (2021) Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol Indic 132:108256. https://doi.org/10.1016/j.ecolind.2021.108256

    Article  Google Scholar 

  • Zhou Y, Zhang Z, Zhu B, Cheng X, Yang L, Gao M, Kong R (2021) MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China. Forests 12(6):752. https://doi.org/10.3390/f12060752

    Article  Google Scholar 

  • Zolfaghari Z, Moradi M (2018) Evaluation of spatial pattern Tecomella undulata in Bushehr province. J Environ Sci Technol. https://doi.org/10.22034/JEST.2018.14418.2303

  • Zolfaghari Z, Moradi M, Basiri R, Ghasemi A (2017) Evaluation of soil physicochemical properties of Tecomella undulata in Busher province. For Wood Prod 70(2):273–279

Download references

Author information

Authors and Affiliations

Authors

Contributions

Senior author conceptualized the chapter theme and interpretation of output of various machine learning techniques. Co-Author prepared various types of language codes in python, Java and in R scripts and convert the various file format from ASCII to KML, Raster, dbf, CSV etc. for software’s like QGIS 3.10.0; Wallace; DIVA-GIS version 7.5; MaxEnt 3.4.1 software; SDM toolbox; Map Comparison Kit; ENMTools and Ntbox; SSDM R packages.

Corresponding author

Correspondence to Manish Mathur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, M., Mathur, P. Ecological niche modelling of Tecomella undulata (Sm.) Seem: an endangered (A2a) tree species from arid and semi-arid environment imparts multiple ecosystem services. Trop Ecol 65, 59–80 (2024). https://doi.org/10.1007/s42965-023-00311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-023-00311-y

Keywords

Navigation