Skip to main content
Log in

Simulation of urban expansion based on cellular automata and maximum entropy model

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Urban expansion is a hot topic in land use/land cover change (LUCC) researches. In this paper, maximum entropy model and cellular automata (CA) model are coupled into a new CA model (Maxent-CA) for urban expansion. This model can help to obtain transition rules from single-period dataset. Moreover, it can be constructed and calibrated easily with several steps. Firstly, Maxent-CA model was built by using remote sensing data of China in 2000 (basic data) and spatial variables (such as population density and Euclidean distance to cities). Secondly, the proposed model was calibrated by analyzing training samples, neighborhood structure and spatial scale. Finally, this model was verified by comparing logistic regression CA model and their simulation results. Experiments showed that suitable sampling ratio (sampling ratio equals the proportion of urban land in the whole region) and von Neumann neighborhood structure will help to yield better results. Spatial structure of simulation results becomes simple as spatial resolution decreases. Besides, simulation accuracy is significantly affected by spatial resolution. Compared to simulation results of logistic regression CA model, Maxent-CA model can avoid clusters phenomenon and obtain better results matching actual situation. It is found that the proposed model performs well in simulating urban expansion of China. It will be helpful for simulating even larger study area in the background of global environment changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batty M, Xie Y. 1994. From cells to cities. Environ Plann B Plann Des, 21: S31–S48

    Google Scholar 

  • Börjesson P, Tufvesson L M. 2011. Agricultural crop-based biofuels—Resource efficiency and environmental performance including direct land use changes. J Clean Prod, 19: 108–120

    Google Scholar 

  • Camagni R, Gibelli M C, Rigamonti P. 2002. Urban mobility and urban form: The social and environmental costs of different patterns of urban expansion. Ecol Econ, 40: 199–216

    Google Scholar 

  • Cao K, Huang B, Li M C, Li W W. 2014. Calibrating a cellular automata model for understanding rural-urban land conversion: A Pareto front-based multi-objective optimization approach. Int J Geogr Inf Sci, 28: 1028–1046

    Google Scholar 

  • Chen J, Ban Y F, Li S N. 2014. Open access to Earth land-cover map. Nature, 514: 434

    Google Scholar 

  • Chen J, Chen J. 2018. GlobeLand30: Operational global land cover mapping and big-data analysis. Sci China Earth Sci, 61: 1533–1534

    Google Scholar 

  • Chen Y M, Li X, Liu X P, Ai B. 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int J Geogr Inf Sci, 28: 234–255

    Google Scholar 

  • Clarke K C, Hoppen S, Gaydos L. 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B, 24: 247–261

    Google Scholar 

  • Costanza R, Ruth M. 1998. Using dynamic modeling to scope environmental problems and build consensus. Environ Manage, 22: 183–195

    Google Scholar 

  • Couce E, Ridgwell A, Hendy E J. 2012. Environmental controls on the global distribution of shallow-water coral reefs. J Biogeogr, 39: 1508–1523

    Google Scholar 

  • Dadashpoor H, Azizi P, Moghadasi M. 2019. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci Total Environ, 655: 707–719

    Google Scholar 

  • Dahal K R, Chow T E. 2014. A GIS toolset for automated partitioning of urban lands. Environ Model Softw, 55: 222–234

    Google Scholar 

  • Dellicour S, Kastally C, Varela S, Michez D, Rasmont P, Mardulyn P, Lecocq T. 2017. Ecological niche modelling and coalescent simulations to explore the recent geographical range history of five widespread bumblebee species in Europe. J Biogeogr, 44: 39–50

    Google Scholar 

  • Ding H Y, Shi W Z. 2013. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City. Int J Remote Sens, 34: 5503–5517

    Google Scholar 

  • Elith J, H. Graham C, P. Anderson R, Dudik M, Ferrier S, Guisan A, J. Hijmans R, Huettmann F, R. Leathwick J, Lehmann A, Li J, G. Lohmann L, A. Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC. M. Overton J, Townsend Peterson A, J. Phillips S, Richardson K, Scachetti-Pereira R, E. Schapire R, Soberön J, Williams S, S. Wisz M, E. Zimmermann N. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129–151

    Google Scholar 

  • Feng Y J, Liu Y. 2013. A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. Int J Geogr Inf Sci, 27: 449–466

    Google Scholar 

  • Ge Q S, Dai J H, He F N, Pan Y, Wang M M. 2008. Land use changes and their relations with carbon cycles over the past 300 a in China. Sci China Ser D-Earth Sci, 51: 871–884

    Google Scholar 

  • Goldewijk K K, Ramankutty N. 2004. Land cover change over the last three centuries due to human activities: The availability of new global data sets. GeoJournal, 61: 335–344

    Google Scholar 

  • He C Y, Okada N, Zhang Q F, Shi P J, Zhang J S. 2006. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl Geogr, 26: 323–345

    Google Scholar 

  • He C Y, Shi P J, Chen J, Pan Y Z, Li X B, Li J, Li Y C, Li J G. 2005. Developing land use scenario dynamics model by the inte-gration of system dynamics model and cellular automata model. Sci China Ser D-Earth Sci, 48: 1979

    Google Scholar 

  • Kalnay E, Cai M. 2003. Impact of urbanization and land-use change on climate. Nature, 423: 528–531

    Google Scholar 

  • Khaki M, Ait-El-Fquih B, Hoteit I, Forootan E, Awange J, Kuhn M. 2018. Unsupervised ensemble Kalman filtering with an uncertain constraint for land hydrological data assimilation. J Hydrol, 564: 175–190

    Google Scholar 

  • Kuang W H, Chen L J, Liu J Y, Xiang W N, Chi W F, Lu D S, Yang T R, Pan T, Liu A L. 2016. Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis. Sci China Earth Sci, 59: 1720–1737

    Google Scholar 

  • Li D, Li X, Liu X P, Chen Y M, Li S Y, Liu K, Qiao J G, Zheng Y Z, Zhang Y H, Lao C H. 2012. GPU-CA model for large-scale land-use change simulation. Chin Sci Bull, 57: 2442–2452

    Google Scholar 

  • Li X, Yeh A G O. 1998. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int J Remote Sens, 19: 1501–1518

    Google Scholar 

  • Li X, Yeh A G O. 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci, 16: 323–343

    Google Scholar 

  • Li X, Yeh A G O. 2004. Data mining of cellular automata’s transition rules. Int J Geogr Inf Sci, 18: 723–744

    Google Scholar 

  • Lin W Q, Wu M H, Zhang Y, Zeng R J, Zheng X J, Shao L, Zhao L Y, Li S X, Tang Y. 2018. Regional differences of urbanization in China and its driving factors. Sci China Earth Sci, 61: 778–791

    Google Scholar 

  • Liu X P, Li X, Chen Y, Tan Z Z, Li S Y, Ai B. 2010. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc Ecol, 25: 671–682

    Google Scholar 

  • Liu X P, Li X, Shi X, Wu S K, Liu T. 2008. Simulating complex urban development using kernel-based non-linear cellular automata. Ecol Model, 211: 169–181

    Google Scholar 

  • Liu X P, Ma L, Li X, Ai B, Li S Y, He Z J. 2014. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. Int J Geogr Inf Sci, 28: 148–163

    Google Scholar 

  • Liu Z S, Gao H, Teng L W, Su Y, Wang X Q, Kong F Y. 2013. Habitat suitability assessment of blue sheep in Helan Mountain based on MAXENT modeling. Acta Ecol Sin, 33: 7243–7249

    Google Scholar 

  • Machado-Machado E A. 2012. Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Appl Geogr, 33: 82–93

    Google Scholar 

  • Mustafa A, Cools M, Saadi I, Teller J. 2017. Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69: 529–540

    Google Scholar 

  • National Bureau of Statistics of the People’s Republic of China. 2018. China Statistical Yearbook (in Chinese). Beijing: China Statistics Press. 1–16

    Google Scholar 

  • Peng J, Wang Y L, Zhang Y, Ye M T, Wu J S. 2006. Research on the influence of land use classification on landscape metrics (in Chinese). Acta Geogr Sin, 61: 157–168

    Google Scholar 

  • Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model, 190: 231–259

    Google Scholar 

  • Phillips S J, Dudik M. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31: 161–175

    Google Scholar 

  • Shalaby A, Tateishi R. 2007. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr, 27: 28–41

    Google Scholar 

  • Shi W Z, Pang M Y C. 2000. Development of Voronoi-based cellular automata—An integrated dynamic model for Geographical Information Systems. Int J Geogr Inf Sci, 14: 455–474

    Google Scholar 

  • Tobler W R. 1970. A computer movie simulating urban growth in the Detroit region. Econ Geogr, 46: 234–240

    Google Scholar 

  • Verstegen J A, Karssenberg D, van der Hilst F, Faaij A P C. 2014. Identifying a land use change cellular automaton by Bayesian data assimilation. Environ Model Softw, 53: 121–136

    Google Scholar 

  • Wang Y, Ji W, Yu X F, Xu X L, Jiang D, Wang Z, Zhuang D F. 2014. The impact of urbanization on the annual average temperature of the past 60 years in Beijing. Adv Meteorol, doi: https://doi.org/10.1155/2014/374987

    Google Scholar 

  • Wu F L. 2002. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int J Geogr Inf Sci, 16: 795–818

    Google Scholar 

  • Yu X, Zhang B Q, Li Q, Chen J. 2016. A method characterizing urban expansion based on land cover map at 30 m resolution. Sci China Earth Sci, 59: 1738–1744

    Google Scholar 

  • Zhang K L, Zhang Y, Zhou C, Meng J C, Sun J, Zhou T H, Tao J. 2019. Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecol Inf, 50: 62–67

    Google Scholar 

  • Zhang Y H, Li X, Liu X P, Qiao J G. 2011. The CA model based on data assimilation (in Chinese). J Remote Sens, 15: 475–491

    Google Scholar 

  • Zhang Y H, Li X, Liu X P, Qiao J G. 2015. Self-modifying CA model using dual ensemble Kalman filter for simulating urban land-use changes. Int J Geogr Inf Sci, 29: 1612–1631

    Google Scholar 

Download references

Acknowledgements

We thank prof. Jun Chen, prof. Xia Li, Jigang Qiao, Dan Li, Xuhong Yang and Yougui Liu for collecting data and providing comments. And we also thank anonymous reviewers for many invaluable comments to improve this manuscript. This work was supported by the National Key R & D Program of China (Grant No. 2017YFA0604404), the National Natural Science Foundation of China (Grant Nos. 41801304 & 41871306) and Educational Commission of Guangdong Province of China (Grant No. 2016KTSCX045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, X., Chen, G. et al. Simulation of urban expansion based on cellular automata and maximum entropy model. Sci. China Earth Sci. 63, 701–712 (2020). https://doi.org/10.1007/s11430-019-9530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9530-8

Keywords

Navigation