Skip to main content
Log in

Robust and Efficient derivative estimation under correlated errors

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

In real applications, the correlated data are commonly encountered. To model such data, many techniques have been proposed. However, of the developed techniques, emphasis has been on the mean function estimation under correlated errors, with scant attention paid to the derivative estimation. In this paper, we propose the locally weighted least squares regression based on different difference quotients to estimate the different order derivatives under correlated errors. For the proposed estimators, we derive their asymptotic bias and variance with different covariance structure errors, which dramatically reduce the estimation variance compared with traditional methods. Furthermore, we establish their asymptotic normality for constructing confidence interval. Based on the asymptotic mean integrated squared error, we provide a data-driven tuning parameters selection criterion. Simulation studies show that the proposed method is more robust and efficient than four other popular methods. Finally, we illustrate the usefulness of the proposed method with a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beran, J., & Feng, Y. (2002). Local polynomial fitting with long-memory, short-memory and antipersistent errors. Annals of the Institute of Statistical Mathematics, 54, 291–311.

    Article  MathSciNet  Google Scholar 

  • Brabanter, K. D., Brabanter, J. D., Gijbels, I., & Moor, B. D. (2013). Derivative estimation with local polynomial fitting. Journal of Machine Learning Research, 14(1), 281–301.

    MathSciNet  Google Scholar 

  • Brabanter, K. D., Cao, F., Gijbels, I., & Opsomer, J. (2018). Local polynomial regression with correlated errors in random design and unknown correlation structure. Biometrika, 105(3), 681–690.

    Article  MathSciNet  Google Scholar 

  • Charnigo, R., Hall, B., & Srinivasan, C. (2011). A generalized \(c_{p}\) criterion for derivative estimation. Technometrics, 53(3), 238–253.

    Article  MathSciNet  Google Scholar 

  • Da Fonseca, C., & Petronilho, J. (2001). Explicit inverses of some tridiagonal matrices. Linear Algebra and its Applications, 325(1–3), 7–21.

    Article  MathSciNet  Google Scholar 

  • Fan, J., & Hall, P. (1994). On curve estimation by minimizing mean absolute deviation and its implications, The Annals of Statistics 867–885.

  • Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman & Hall.

    Google Scholar 

  • Francisco-Fernández, M., & Vilar-Fernández, J. M. (2001). Local polynomial regression estimation with correlated errors. Communications in Statistics-Theory and Methods, 30(7), 1271–1293.

    Article  MathSciNet  Google Scholar 

  • Ganong, P., & Jäger, S. (2018). A permutation test for the regression kink design. Journal of the American Statistical Association, 113(522), 494–504.

    Article  MathSciNet  CAS  Google Scholar 

  • Gao, X., Ren, Y., & Umar, M. (2022). To what extent does covid-19 drive stock market volatility? A comparison between the us and china, Economic Research-Ekonomska Istraživanja, 35(1), 1686–1706.

    Article  Google Scholar 

  • Hall, P., Kay, J., & Titterington, D. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 77(3), 521–528.

    Article  MathSciNet  Google Scholar 

  • Härdle, W., & Gasser, T. (1984). Robust non-parametric function fitting. Journal of the Royal Statistical Society: Series B, 46(1), 42–51.

    MathSciNet  Google Scholar 

  • Hart, J. D. (1991). Kernel regression estimation with time series errors. Journal of the Royal Statistical Society: Series B, 53(1), 173–187.

    MathSciNet  ADS  Google Scholar 

  • Liu, S., & Yang, J. (2023). Kernel regression for estimating regression function and its derivatives with unknown error correlations. Metrika, 1–20.

  • Liu, Y., & Brabanter, K. D. (2020). Smoothed nonparametric derivative estimation using weighted difference quotients. Journal of Machine Learning Research, 21(65), 1–45.

    MathSciNet  Google Scholar 

  • Liu, S., & Kong, X. (2022). A generalized correlated \(c_{p}\) criterion for derivative estimation with dependent errors. Computational Statistics & Data Analysis, 171, 107473.

    Article  Google Scholar 

  • Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica: Journal of the Econometric Society, 23, 1279–1313.

    Article  Google Scholar 

  • Lönnberg, P., & Hollingsworth, A. (1986). The statistical structure of short-range forecast errors as determined from radiosonde data. part II: The covariance of height and wind errors. Tellus A, 38(2), 137–161.

    Article  ADS  Google Scholar 

  • Ojeda, C. J. L., & Quast, B. (2022). locpol: Kernel local polynomial regression, R package version 0.8-0, https://CRAN.R-project.org/package=locpol.

  • Opsomer, J., Wang, Y., & Yang, Y. (2001). Nonparametric regression with correlated errors. Statistical Science, 16(2), 134–153.

    Article  MathSciNet  Google Scholar 

  • Ramsey, J., & Ripley, B. (2022). pspline: Penalized smoothing splines, 2010, R package version 1.0-19, https://CRAN.R-project.org/package=pspline.

  • Reschenhofer, E. (2019). Heteroscedasticity-robust estimation of autocorrelation. Communications in Statistics-Simulation and Computation, 48(4), 1251–1263.

    Article  MathSciNet  Google Scholar 

  • Sun, Y., Wu, M., Zeng, X., & Peng, Z. (2021). The impact of covid-19 on the Chinese stock market: Sentimental or substantial? Finance Research Letters, 38, 101838.

    Article  PubMed  Google Scholar 

  • Tecuapetla-Gómez, I., & Munk, A. (2017). Autocovariance estimation in regression with a discontinuous signal and \(m\)-dependent errors: A difference-based approach. Scandinavian Journal of Statistics, 44(2), 346–368.

    Article  MathSciNet  Google Scholar 

  • Tong, T., & Wang, Y. (2005). Estimating residual variance in nonparametric regression using least squares. Biometrika, 92(4), 821–830.

    Article  MathSciNet  Google Scholar 

  • Wallis, J. R., & O’Connell, P. E. (1972). Small sample estimation of \(\rho _{1}\). Water Resources Research, 8(3), 707–712.

    Article  ADS  Google Scholar 

  • Wang, W., & Lin, L. (2015). Derivative estimation based on difference sequence via locally weighted least squares regression. Journal of Machine Learning Research, 16(1), 2617–2641.

    MathSciNet  Google Scholar 

  • Wang, W., Lin, L., & Yu, L. (2017). Optimal variance estimation based on lagged second-order difference in nonparametric regression. Computational Statistics, 32, 1047–1063.

    Article  MathSciNet  Google Scholar 

  • Wang, W., Lu, J., Tong, T., & Liu, Z. (2022). Debiased learning and forecasting of first derivative. Knowledge-Based Systems, 236, 107781.

    Article  Google Scholar 

  • Wang, H., Peng, B., Li, D., & Leng, C. (2021). Nonparametric estimation of large covariance matrices with conditional sparsity. Journal of Econometrics, 223(1), 53–72.

    Article  MathSciNet  Google Scholar 

  • Wang, W., & Yu, P. (2017). Asymptotically optimal differenced estimators of error variance in nonparametric regression. Computational Statistics & Data Analysis, 105, 125–143.

    Article  MathSciNet  Google Scholar 

  • Wang, W., Yu, P., Lin, L., & Tong, T. (2019). Robust estimation of derivatives using locally weighted least absolute deviation regression. Journal of Machine Learning Research, 20(1), 2157–2205.

    MathSciNet  Google Scholar 

  • Wu, W. B., & Pourahmadi, M. (2003). Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika, 90(4), 831–844.

    Article  MathSciNet  Google Scholar 

  • Xiao, Z., Linton, O. B., Carroll, R. J., & Mammen, E. (2003). More efficient local polynomial estimation in nonparametric regression with autocorrelated errors. Journal of the American Statistical Association, 98(464), 980–992.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Wang’s work was supported by National Natural Science Foundation of China (No. 12071248). Zhao’s work was supported by National Natural Science Foundation of China (No. 12171277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenWu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42952_2023_240_MOESM1_ESM.pdf

The supplementary material contains the proofs of Theorems 1–5, theoretical properties when \(\rho = \pm \frac{1}{2}\) and some additional simulation results in Sect. 5. (PDF 501 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., Shen, W., Zhao, S. et al. Robust and Efficient derivative estimation under correlated errors. J. Korean Stat. Soc. 53, 149–168 (2024). https://doi.org/10.1007/s42952-023-00240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-023-00240-5

Keywords

Navigation