Skip to main content
Log in

Tensile Strength, Deformation Strength, and Semi-circular Bending Properties of Carbon–Sulfur as a Sustainable Filler in Asphalt Mixes

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

This research investigated the effect of utilizing a carbon–sulfur by-product material of sulfur purification, as a filler replacement in dense-graded asphalt mixtures using 40/50 asphalt in various carbon–sulfur rates. Carbon–sulfur filler was evaluated as a replacement for the commonly used industrial filler, calcium carbonate (CaCO3), aiming to find a cost-effective solution to Iraq’s growing solid waste problem and declining landfill capacities, such as carbon–sulfur. Various laboratory tests and parameters, including the Marshall stability and flow, indirect tensile strength, moisture susceptibility, deformation strength, and semi-circular bending test, were conducted on each mixture group. The results suggested that concentrations of 5% and 6% carbon–sulfur provided several benefits. These included enhanced resistance to cracking and rutting, as well as compliance with Marshall properties and moisture susceptibility. Consequently, these findings indicate that the use of carbon–sulfur as a filler could potentially lead to significant cost savings and a reduction in landfill use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15

Similar content being viewed by others

References

  1. Dimulescu, C., & Burlacu, A. (2021). Industrial waste materials as alternative fillers in asphalt mixtures. Sustainability, 13(14), 8068.

    Article  CAS  Google Scholar 

  2. Yan, K.-Z., Xu, H.-B., & Zhang, H.-L. (2013). Effect of mineral filler on properties of warm asphalt mastic containing Sasobit. Construction and Building Materials, 48, 622–627.

    Article  Google Scholar 

  3. AL-Saffar, N. A. H. (2013). The Effect of Filler Type and Content on Hot Asphalt Concrete Mixtures Properties. Al-Rafidain Engineering Journal (AREJ), 21(6), 88–100. https://doi.org/10.33899/rengj.2013.82394

    Article  Google Scholar 

  4. Kim, Y.-R., Little, D. N., & Song, I. (2003). Effect of mineral fillers on fatigue resistance and fundamental material characteristics: Mechanistic evaluation. Transportation Research Record, 1832(1), 1–8.

    Article  Google Scholar 

  5. Chen, M., Zheng, J., Li, F., Wu, S., Lin, J., & Wan, L. (2015). Thermal performances of asphalt mixtures using recycled tyre rubber as mineral filler. Road Materials and Pavement Design, 16(2), 379–391.

    Article  CAS  Google Scholar 

  6. Arabani, M., Tahami, S. A., & Taghipoor, M. (2017). Laboratory investigation of hot mix asphalt containing waste materials. Road Materials and Pavement Design, 18(3), 713–729.

    Article  CAS  Google Scholar 

  7. Al-Ali, B. A. T., Al-Taei, A. M., & Abdullah, S. (2022). Effect of lime stone & cement on the mechanical properties of hot mix asphalt (HMA). Al-Rafidain Engineering Journal (AREJ), 27(2), 39–48. https://doi.org/10.33899/rengj.2022.133947.1174

    Article  Google Scholar 

  8. Al-Hadidy, A. (2001). Influence of polyethylene and sulfur wastes on characteristics of asphalt paving materials. MSc thesis, College of Engineering, Civil Engineering Department, Al-Mustansiriyah University, Baghdad-Iraq.

  9. Al-Golamie, F. S. (2003). The possibility of utilizing solid wastes from Mishraq sulphur purification processes. MSc, college of Science, Chemistry Dept, University of Mosul

  10. Hameed, A. T., & Al-Hadidy, A. R. I. (2011). The effect of sulfur waste and ABS on asphalt cement properties. Al-Rafidain Engineering Journal (AREJ), 19(3), 1–10. https://doi.org/10.33899/rengj.2011.27005

    Article  Google Scholar 

  11. Mohammed, B. K. (2021). The use of sulfur residues from Mishraq sulfur as a raw material in the preparation of nanoparticle sulfur. College of Education for Girls, University of Mosul.

  12. Gladkikh, V., Korolev, E., Husid, D., & Sukhachev, I. (2016). Properties of sulfur-extended asphalt concrete. MATEC Web of Conferences, 86, 04024.

    Article  Google Scholar 

  13. Rasheed, S. K., & Al-Hadidy, A. (2022). Evaluation of sulfur waste as sustainable mineral filler in Asphalt paving mixtures. International Journal of Pavement Research and Technology, 17, 202–215.

    Article  Google Scholar 

  14. Al-Hadidy, A. (2023). Sustainable recycling of sulfur waste through utilization in asphalt paving applications. International Journal of Pavement Research and Technology, 16(2), 474–486.

    Article  Google Scholar 

  15. Al-Hadidy, A. (2022). Sustainable recycling of sulfur waste through utilization in asphalt paving applications. International Journal of Pavement Research and Technology, 16, 474–486.

    Article  Google Scholar 

  16. Baig, M. G., & Wahhab, A. (2013). Assesment of sulfur containing air pollutants in utilizing the sulfur extended asphalt concrete mixes in Saudi Arabia. International Journal of Development Research, 4(1), 144–152.

    Google Scholar 

  17. Nazarbeygi, A., & Moeini, A. (2012). Sulfur extended asphalt investigation—Laboratory and field trial. In Proceedings of the 5th Eurasphalt and Eurobitume Congress, A5EE (pp. 151–159).

  18. Kar, D., Panda, M., & Giri, J. P. (2014). Influence of fly-ash as a filler in bituminous mixes. ARPN Journal of Engineering and Applied Sciences, 9(6), 895–900.

    Google Scholar 

  19. Adorjányi, K. Properties of hot asphalt mixes containing fly ash filler.

  20. Mistry, R., & Roy, T. K. (2016). Effect of using fly ash as alternative filler in hot mix asphalt. Perspectives in Science, 8, 307–309.

    Article  Google Scholar 

  21. ASTM. (2004). Standard specification hot-mixed, hot laid bituminous paving mixtures. D3515, ASTM International.

    Google Scholar 

  22. ASTM. (2006). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. C131 ASTM International.

    Google Scholar 

  23. ASTM. (2017). Standard test method for determining the percentage of fractured particles in coarse aggregate. D5821, ASTM International.

    Google Scholar 

  24. ASTM. (2017). Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading). C1252, ASTM International.

    Google Scholar 

  25. ASTM. (2013). Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. C88, ASTM International.

    Google Scholar 

  26. ASTM. (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate. C127, ASTM International.

    Google Scholar 

  27. ASTM. (2015). Standard test method for relative density (specific gravity) and absorption of fine aggregate. West Conshohocken: C128, ASTM International.

    Google Scholar 

  28. National Center for Construction Laboratories (NCCL), “Materials and Construction Works Specification”. Ministry of Housing and Construction and Public Works, Directorate of Research and Technical Affairs, January, 2018, Baghdad-Iraq.

  29. ASTM. (2020). Standard test method for penetration of bituminous materials. D5/D5M, ASTM International.

    Google Scholar 

  30. ASTM. (2020). Standard test method for softening point of bitumen (ring-and-ball apparatus). D36/D36M, ASTM International.

    Google Scholar 

  31. ASTM. (2017). Standard test method for ductility of asphalt materials. D113, ASTM International.

    Google Scholar 

  32. ASTM. (2021). Standard test method for density of semi-solid asphalt binder (pycnometer method). D70/D70M, ASTM International.

    Google Scholar 

  33. ASTM. (2018). Standard test method for flash and fire points by Cleveland open cup tester. D92, ASTM International.

    Google Scholar 

  34. ASTM. (2022). Standard test method for effects of heat and air on asphaltic materials (thin-film oven test). D1754/D1754M, ASTM International.

    Google Scholar 

  35. ASTM. (2023). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. D4402/D4402M, ASTM International.

    Google Scholar 

  36. ASTM. (2018). Standard test method for separation of asphalt into four fractions. D4124, ASTM International.

    Google Scholar 

  37. Ai, A.-H., Jasim, A. F., & Rashed, A. M. (2022). Mechanistic analysis and durability of thiophene paving mixtures. Journal of Materials in Civil Engineering, 34(7), 06022002.

    Article  CAS  Google Scholar 

  38. Shareef, S. S., Thaeir, A., & Motea, O. (2023). Concentration and study of the carbon-sulfur residues resulting from the thermal purification of Fracsh sulfur in the Al-Mishraq sulfur mine. Journal of Survey in Fisheries Sciences, 10(1S), 5355–5367.

    Google Scholar 

  39. SCRB. (2007). General specification for roads and bridges (Revised Ed.).

  40. ASTM. (2022). Standard test method for Marshall stability and flow of asphalt mixtures. D6927, ASTM International.

    Google Scholar 

  41. ASTM. (2017). Standard test method for indirect tensile (IDT) strength of asphalt mixtures. D6931, ASTM International.

    Google Scholar 

  42. ASTM. (2022). Standard test method for effect of moisture on asphalt concrete paving mixtures. D4867/D4867M, ASTM International.

    Google Scholar 

  43. Doh, Y. S., Yun, K. K., Amirkhanian, S. N., & Kim, K. W. (2007). Framework for developing a static strength test for measuring deformation resistance of asphalt concrete mixtures. Construction and Building Materials, 21(12), 2047–2058.

    Article  Google Scholar 

  44. Kim, N., Park, J., Choi, J. S., Kim, S., & Kim, K. W. (2011). Correlation of deformation strength (SD) and tensile strength of asphalt mixtures. Journal of the Korean Asphalt Institute, 1(1), 62–69.

    Google Scholar 

  45. ASTM. (2023). Standard test method for evaluation of asphalt mixture cracking resistance using the semi-circular bend test (SCB) at intermediate temperatures. D8044, ASTM International.

    Google Scholar 

  46. AASHTO. (2020). Standard method of test for determining the fracture energy of asphalt mixtures using the semicircular bend geometry (SCB). TP 105, AASHTO.

    Google Scholar 

  47. AASHTO. (2020). Standard method of test for determining the fracture potential of asphalt mixtures using the Illinois Flexibility Index Test (I-FIT). TP 124, AASHTO.

    Google Scholar 

  48. Al-Qadi, I. L., et al. (2015). Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS. Illinois Center for Transportation Series No. 15-017.

  49. Minitab (Version 21.1). (2021). Minitab, LLC.

  50. Trang, N. T., Hung, T. N., Khang, P. H., Cậy, B. X., & Kien, B. N. (2021). Research on the effects of sulfur on characteristics of sulfur bituminous binder (SBB) and hot mix asphalt-sulfur (HMAS). Transport & Communications Science Journal, 72, 33–45.

    Article  Google Scholar 

  51. Rezvani, V., & Saghi, H. (2015). Characteristics and preparation method of sulfur extended asphalt mixtures. American Journal of Civil Engineering, 3(2–2), 69–74.

    Article  Google Scholar 

  52. Kim, S.-W., Park, H.-S., Kim, J.-K., & Jung, Y.-W. (2016). Characteristics of the warm-mix asphalt mixtures using the modified sulfur binder. Journal of the Korean Recycled Construction Resources Institute, 4(4), 489–495.

    Article  Google Scholar 

  53. Choudhary, J., Kumar, B., & Gupta, A. (2020). Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Construction and building Materials, 234, 117271.

    Article  Google Scholar 

  54. A. Institute. (2014). MS-2 asphalt mix design methods. Lexington Kentucky.

    Google Scholar 

  55. Al-Hadidy, A. (2022). Laboratory evaluation of sulfur waste asphalt mixtures containing SBS and waste polypropylene polymers. International Journal of Pavement Research and Technology, 17, 503–517.

    Article  Google Scholar 

  56. Gul, M. A., et al. (2021). Evaluation of various factors affecting mix design of sulfur-extended asphalt mixes. Construction and Building Materials, 290, 123199.

    Article  CAS  Google Scholar 

  57. Nguyen, V. H., & Le, V. P. (2019). Performance evaluation of sulfur as alternative binder additive for asphalt mixtures. International Journal of Pavement Research and Technology, 12, 380–387.

    Article  Google Scholar 

  58. I. a. T. Ministry of Land. (2017). Guideline for construction of asphalt concrete pavement (in Korea).

  59. Zhang, J., Sakhaeifar, M., Little, D. N., Bhasin, A., & Kim, Y.-R. (2018). Characterization of crack growth rate of sulfur-extended asphalt mixtures using cyclic semicircular bending test. Journal of Materials in Civil Engineering, 30(12), 04018311.

    Article  CAS  Google Scholar 

  60. Louisiana, D. (2016). Louisiana standard specifications for roads and bridges. State of Louisiana, Department of Transportation and Development.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Al-Hadidy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mohammed, M.A., Al-Hadidy, A.I. Tensile Strength, Deformation Strength, and Semi-circular Bending Properties of Carbon–Sulfur as a Sustainable Filler in Asphalt Mixes. Int. J. Pavement Res. Technol. (2024). https://doi.org/10.1007/s42947-024-00427-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-024-00427-x

Keywords

Navigation