Skip to main content
Log in

Prediction of International Roughness Index Using CatBooster and Shap Values

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

International Roughness Index (IRI) is the performance index of pavements that exhibits the efficiency of pavement smoothness. Road roughness is a fundamental element used for determining the performance of pavements and the ride quality of road users, therefore, this research aims to develop the precise IRI prediction model for flexible pavements using advanced machine learning algorithms including supervised methods. This research is directed toward accessing the functional performance of the pavements through long-term pavement performance (LTPP) databases. For developing the model, the incorporated dataset includes a set of functional attributes from general pavement studies (GPS-1, GPS-2 and GPS-6) and specific pavement studies (SPS-1, SPS-3 and SPS-5). The developed algorithms showed that the machine learning algorithms are more precise and accurate in predicting the IRI than the traditional regression approaches. The machine learning algorithms use the shapely additive explanation (SHAP) values to access the feature significance for each independent element on the predictive performance. The analysis showed that CatBooster Regression outperformed the random forest regression, artificial neural network (ANN), and the simple regression models in terms of mean square error and prediction quality with a coefficient of determination up to 0.99. The study depicted that it is possible to correlate the roughness index with pavement and structural, climatic and distress parameters that can be utilized for pavement maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

All the datasets implemented in the research are available from the Department of Transportation United States Government website at https://infopave.fhwa.dot.gov.

Abbreviations

LTTP:

Long term pavement performance

MLR:

Multiple linear regression

RF:

Random forest

ANN:

Artificial neural network

GP:

Genetic programming

SHAP:

Shapely additive explanations

GMDH:

Group method of data handling

References

  1. Paterson, W. D. 0. (1987). Ioog; the highway design and maintenance standards series road deterioration and maintenance effects 5E-i.

  2. Elhadidy, A. A., El-Badawy, S. M., & Elbeltagi, E. E. (2021). A simplified pavement condition index regression model for pavement evaluation. International Journal of Pavement Engineering, 22(5), 643–652. https://doi.org/10.1080/10298436.2019.1633579

    Article  Google Scholar 

  3. Sayers, M. W., Gillespie, T. D., & Paterson, W. D. (1986). WTP-46 guidelines for conducting and calibrating road roughness measurements.

  4. Fhwa. (2016). Tech brief measuring and specifying pavement smoothness.

  5. Ziari, H., Sobhani, J., Ayoubinejad, J., & Hartmann, T. (2015). Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods. International Journal of Pavement Engineering, 17(9), 776–788. https://doi.org/10.1080/10298436.2015.1019498

    Article  Google Scholar 

  6. Sidess, A., Ravina, A., & Oged, E. (2020). A model for predicting the deterioration of the international roughness index. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2020.1804062

    Article  Google Scholar 

  7. Kirbaş, U. (2018). IRI sensitivity to the influence of surface distress on flexible pavements. Coatings. https://doi.org/10.3390/coatings8080271

    Article  Google Scholar 

  8. Guo, R., Fu, D., & Sollazzo, G. (2021). An ensemble learning model for asphalt pavement performance prediction based on gradient boosting decision tree. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2021.1910825

    Article  Google Scholar 

  9. Li, W., Huyan, J., Xiao, L., Tighe, S., & Pei, L. (2019). International roughness index prediction based on multigranularity fuzzy time series and particle swarm optimization. Expert Systems with Applications. https://doi.org/10.1016/j.eswax.2019.10

    Article  Google Scholar 

  10. Yang, G., Li, Q. J., Zhan, Y., Fei, Y., & Zhang, A. (2018). Convolutional neural network-based friction model using pavement texture data. Journal of Computing in Civil Engineering, 32(6), 04018052. https://doi.org/10.1061/(asce)cp.1943-5487.0000797

    Article  Google Scholar 

  11. Najafi, S., Flintsch, G. W., & Khaleghian, S. (2019). Pavement friction management–artificial neural network approach. International Journal of Pavement Engineering, 20(2), 125–135. https://doi.org/10.1080/10298436.2016.1264221

    Article  CAS  Google Scholar 

  12. Gong, H., Sun, Y., Mei, Z., & Huang, B. (2018). Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks. Construction and Building Materials, 190, 710–718. https://doi.org/10.1016/j.conbuildmat.2018.09.087

    Article  Google Scholar 

  13. Hossain, M. I., Gopisetti, L. S. P., & Miah, M. S. (2019). International roughness index prediction of flexible pavements using neural networks. Journal of Stomatology. https://doi.org/10.1061/JPEODX.0000088

    Article  Google Scholar 

  14. Abdelaziz, N., Abd El-Hakim, R. T., El-Badawy, S. M., & Afify, H. A. (2020). International Roughness Index prediction model for flexible pavements. International Journal of Pavement Engineering, 21(1), 88–99. https://doi.org/10.1080/10298436.2018.1441414

    Article  Google Scholar 

  15. Sandra, A. K., & Sarkar, A. K. (2013). Development of a model for estimating International Roughness Index from pavement distresses. International Journal of Pavement Engineering, 14(8), 715–724. https://doi.org/10.1080/10298436.2012.703322

    Article  Google Scholar 

  16. Abd El-Hakim, R., & El-Badawy, S. (2013). International roughness index prediction for rigid pavements: an artificial neural network application. Advanced Materials Research, 723, 854–860. https://doi.org/10.4028/www.scientific.net/AMR.723.854

    Article  Google Scholar 

  17. Shahnazari, H., Tutunchian, M. A., Mashayekhi, M., & Amini, A. A. (2012). Application of soft computing for prediction of pavement condition index. Journal of Transportation Engineering. https://doi.org/10.1061/(ASCE)TE

    Article  Google Scholar 

  18. Dalla Rosa, F., Liu, L., & Gharaibeh, N. G. (2017). IRI prediction model for use in network-level pavement management systems. Journal of Transportation Engineering, Part B: Pavements, 143(1), 04017001. https://doi.org/10.1061/jpeodx.0000003

    Article  Google Scholar 

  19. Gharieb, M., & Nishikawa, T. (2021). Development of roughness prediction models for Laos national road network. CivilEng, 2(1), 158–173. https://doi.org/10.3390/civileng2010009

    Article  Google Scholar 

  20. Chandra, S., Sekhar, C. R., Bharti, A. K., & Kangadurai, B. (2013). Relationship between pavement roughness and distress parameters for Indian highways. Journal of Transportation Engineering. https://doi.org/10.1061/(ASCE)TE

    Article  Google Scholar 

  21. Nassiri, S., Shafiee, M. H., & Bayat, A. (2013). Development of roughness prediction models using Alberta transportation’s pavement management system. International Journal of Pavement Research and Technology, 6(6), 714–720. https://doi.org/10.6135/ijprt.org.tw/2013.6(6).714

    Article  Google Scholar 

  22. Karballaeezadeh, N., Mohammadzadeh, D., Moazemi, D., Nabipour, N., Mosavi, A., & Reuter, U. (2020). Smart structural health monitoring of flexible pavements using machine learning methods. Coatings. https://doi.org/10.20944/preprints202004.0029.v1

    Article  Google Scholar 

  23. Gong, H., Sun, Y., Shu, X., & Huang, B. (2018). Use of random forests regression for predicting IRI of asphalt pavements. Construction and Building Materials, 189, 890–897. https://doi.org/10.1016/j.conbuildmat.2018.09.017

    Article  Google Scholar 

  24. Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of Big Data. https://doi.org/10.1186/s40537-020-00369-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hossain, M. I., Gopisetti, L. S. P., & Miah, M. S. (2017). Prediction of international roughness index of flexible pavements from climate and traffic data using artificial neural network modeling. In: Airfield and Highway Pavements 2017: Design, Construction, Evaluation, and Management of Pavements - Proceedings of the International Conference on Highway Pavements and Airfield Technology 2017, 2017-August, 256–267. https://doi.org/10.1061/9780784480922.023.

  26. Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Methods Microbiological Journal of Microbiological Methods 43. www.elsevier.com/locate/jmicmeth.

  27. Jain, K.A. (1996). Artificial neural network.

  28. Sollazzo, G., Fwa, T. F., & Bosurgi, G. (2017). An ANN model to correlate roughness and structural performance in asphalt pavements. Construction and Building Materials, 134, 684–693. https://doi.org/10.1016/j.conbuildmat.2016.12.186

    Article  Google Scholar 

  29. Agarap, A. F. (2018). Deep Learning using Rectified Linear Units (ReLU). http://arxiv.org/abs/1803.08375.

  30. Dozat, T. (2015). Incorporating Nesterov Momentum into Adam. http://mattmahoney.net/dc/text8.zip.

  31. Ruder, S. (2016). An overview of gradient descent optimization algorithms. http://arxiv.org/abs/1609.04747.

  32. Breiman, L. (2001). Random forests. 45.

  33. Biau, G., & Fr, G. B. (2012). Analysis of a random forests model. Journal of Machine Learning Research, 13, 1063–1095.

    MathSciNet  Google Scholar 

  34. Scornet, E., Biau, G., & Vert, J. P. (2015). Consistency of random forests. Annals of Statistics, 43(4), 1716–1741. https://doi.org/10.1214/15-AOS1321

    Article  MathSciNet  Google Scholar 

  35. Jain, V. (2019). Network intrusion detection using CatBoost algorithm.

  36. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2017). CatBoost: unbiased boosting with categorical features. http://arxiv.org/abs/1706.09516.

  37. Ibrahim, A. A., Ridwan, R. L., Muhammed, M. M., Abdulaziz, R. O., & Saheed, G. A. (2020). Comparison of the CatBoost classifier with other machine learning methods. IJACSA) International Journal of Advanced Computer Science and Applications 11(11). www.ijacsa.thesai.org.

  38. Highway Administration, F., & Pavement Performance program, L.-T. (2017). The long-term pavement performance program.

  39. Elkins, G., & Ostrom, B. (2019). Long-term pavement performance information management system user guide. http://www.fhwa.dot.gov/research/tfhrc/programs/infrastructure/pavements/ltpp/.

  40. Issa, A., Samaneh, H., & Ghanim, M. (2021). Predicting pavement condition index using artificial neural networks approach. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2021.04.033

    Article  Google Scholar 

  41. Mazari, M., & Rodriguez, D. D. (2016). Prediction of pavement roughness using a hybrid gene expression programming-neural network technique. Journal of Traffic and Transportation Engineering (English Edition), 3(5), 448–455. https://doi.org/10.1016/j.jtte.2016.09.007

    Article  Google Scholar 

  42. Lundberg, S., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. http://arxiv.org/abs/1705.07874.

  43. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., & Zheng, X. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed systems. http://arxiv.org/abs/1603.04467.

  44. Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. Stata Journal, 20(1), 3–29. https://doi.org/10.1177/1536867X20909688

    Article  Google Scholar 

  45. Sidess, A., Ravina, A., & Oged, E. (2021). A model for predicting the deterioration of the pavement condition index. International Journal of Pavement Engineering, 22(13), 1625–1636. https://doi.org/10.1080/10298436.2020.1714044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Long Term Pavement Performance-Federal Highway Administration, United States of America, for providing the source data collected through online database for the project “Prediction of International Roughness Index Using Machine Learning Algorithms” as a part of research study.

Author information

Authors and Affiliations

Authors

Contributions

SB: conceptualization, methodology, designed and tested the algorithms in the research, writing-original draft preparation. PPK: investigation, resources, data curation, review and editing coordinated this research. TC: writing- review & editing, visualization, supervision.

Corresponding author

Correspondence to Saket Bral.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Consent for Publications

Not applicable.

Ethical Approval and Consent to Participate

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bral, S., Kumar, P.P. & Chopra, T. Prediction of International Roughness Index Using CatBooster and Shap Values. Int. J. Pavement Res. Technol. 17, 518–533 (2024). https://doi.org/10.1007/s42947-022-00253-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00253-z

Keywords

Navigation