Skip to main content
Log in

Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

This study proposes regression and machine-learning techniques to develop a validated model that predicts the California Bearing Ratio (CBR) values for subgrade soil using soil index properties. Around 60 specimens were prepared experimentally by adding different sand percentages to the natural soil to provide a wide range of soil properties. In addition, soil test reports from the local transportation authority were also used in the study. A total of 110 soil samples were included to generalize the predicted model. This study included three machine-learning (ML) techniques: artificial neural networks (ANN), M5P Model tree, and the lazy algorithm K-nearest neighbor. In addition, two conventional modeling techniques were used: multiple linear regression (MLR) and nonlinear regression (NLR). In the developed model, the laboratory-determined CBR represents the response variables, whereas the compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)), Atterberg limits (liquid limit (LL), plastic limit (PL), and plasticity index (PI)), density, gradation parameter (percent of materials retained on sieve #200 (R200), and percent of materials retained on sieve #10 (R10)) were used as predictors. Results revealed that the best model to predict the CBR for soil using material properties is the ANN model with R2 of 90.46 and RMSE of 7.89, followed by KNN, MLR, M5P, and nonlinear regression in descending order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kim, D., & Siddiki, N.Z. (2006). Simplification of Resilient Modulus Testing for Subgrades, Indianapolis, IN https://doi.org/10.5703/1288284313388.

  2. Yildirim, B., & Gunaydin, O. (2011). Estimation of California bearing ratio by using soft computing systems. Expert Systems with Applications, 38, 6381–6391. https://doi.org/10.1016/j.eswa.2010.12.054

    Article  Google Scholar 

  3. Chu, X., Dawson, A., & Thom, N. (2021). Prediction of resilient modulus with consistency index for fine-grained soils. Transportation Geotechnics, 31, 100650. https://doi.org/10.1016/j.trgeo.2021.100650

    Article  Google Scholar 

  4. Taskiran, T. (2010). Prediction of California bearing ratio (CBR) of fine grained soils by AI methods. Advances in Engineering Software, 41, 886–892. https://doi.org/10.1016/j.advengsoft.2010.01.003

    Article  Google Scholar 

  5. Cheng, Q., Tang, C. S., Zeng, H., Zhu, C., An, N., & Shi, B. (2020). Effects of microstructure on desiccation cracking of a compacted soil. Engineering Geology, 265, 105418. https://doi.org/10.1016/J.ENGGEO.2019.105418

    Article  Google Scholar 

  6. Tseng, C. H., Chan, Y. C., Jeng, C. J., Rau, R. J., & Hsieh, Y. C. (2021). Deformation of landslide revealed by long-term surficial monitoring: A case study of slow movement of a dip slope in northern Taiwan. Engineering Geology, 284, 106020. https://doi.org/10.1016/j.enggeo.2021.106020

    Article  Google Scholar 

  7. Bardhan, A., Gokceoglu, C., Burman, A., Samui, P., & Asteris, P. G. (2021). Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Engineering Geology, 291, 106239. https://doi.org/10.1016/j.enggeo.2021.106239

    Article  Google Scholar 

  8. Ramasubbarao, G., & Sankar, S. G. (2013). Predicting soaked CBR value of fine grained soils using index and compaction characteristics. Jordan Journal of Civil Engineering, 7(3), 354–360.

    Google Scholar 

  9. Ghorbani, A., & Hasanzadehshooiili, H. (2018). Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and Foundations, 58, 34–49. https://doi.org/10.1016/j.sandf.2017.11.002

    Article  Google Scholar 

  10. Tenpe, A. R., & Patel, A. (2020). Utilization of support vector models and gene expression programming for soil strength modeling. Arabian Journal for Science and Engineering, 45, 4301–4319. https://doi.org/10.1007/s13369-020-04441-6

    Article  Google Scholar 

  11. Kumar, S. A., Kumar, J. P., & Rajeev, J. (2013). Application of machine learning techniques to predict soaked CBR of remolded soils. IJERT, 2, 3019–3024.

    Google Scholar 

  12. Bardhan, A., Samui, P., Ghosh, K., Gandomi, A. H., & Bhattacharyya, S. (2021). ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions. Applied Soft Computing, 110, 107595. https://doi.org/10.1016/J.ASOC.2021.107595

    Article  Google Scholar 

  13. Bardhan, A., GuhaRay, A., Gupta, S., Pradhan, B., & Gokceoglu, C. (2022). A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of Dedicated Freight Corridor. Transportation Geotechnics, 32, 100678. https://doi.org/10.1016/J.TRGEO.2021.100678

    Article  Google Scholar 

  14. Black, W. P. M. (1962). a Method of estimating the california bearing ratio of cohesive soils from plasticity data. Geotechnique, 12, 271–282.

    Article  Google Scholar 

  15. Al-Refeai, T., & Al-Suhaibani, A. (1997). Prediction of CBR using dynamic cone penetrometer. Journal of King Saud University - Engineering Sciences, 9, 191–203. https://doi.org/10.1016/S1018-3639(18)30676-7

    Article  Google Scholar 

  16. NCHRP, ARA, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, Transp. Res. Board Natl. Res. Counc. (2004). http://pubsindex.trb.org/view.aspx?id=703699

  17. Bello, A. (2012). Regression analysis between properties of subgrade lateritic soil. Leonardo Journal of Science, 21, 99–108.

    ADS  Google Scholar 

  18. Alawi, M. H., & Rajab, M. I. (2013). Prediction of California bearing ratio of subbase layer using multiple linear regression models. Road Materials and Pavement Design, 14, 211–219. https://doi.org/10.1080/14680629.2012.757557

    Article  Google Scholar 

  19. Shirur, N. B., & Hiremath, S. G. (2014). Establishing relationship between Cbr value and physical properties of soil. IOSR Journal of Mechanical and Civil Engineering, 11, 26–30. https://doi.org/10.9790/1684-11512630

    Article  Google Scholar 

  20. Nguyen, B. T., & Mohajerani, A. (2015). Prediction of California bearing ratio from physical properties of fine-grained soils. International Journal of Civil, Structural, Construction and Architectural Engineering, 9(2), 136–141.

    Google Scholar 

  21. Rehman, A., Farooq, K., Mujtaba, H., & Altaf, O. (2015). Estimation of California bearing ratio (Cbr) from index properties and compaction characteristics of coarse. Sci. Imt. (Lahore), 27, 6207–6210.

    Google Scholar 

  22. Bayamack, J. F. N., Onana, V. L., Mvindi, A. T. N., Ze, A. N. O., Ohandja, H. N., & Eko, R. M. (2019). Assessment of the determination of Californian Bearing Ratio of laterites with contrasted geotechnical properties from simple physical parameters. Transportation Geotechnics, 19, 84–95. https://doi.org/10.1016/j.trgeo.2019.02.001

    Article  Google Scholar 

  23. Goel, G., Sachdeva, S. N., & Pal, M. (2022). Modelling of tensile strength ratio of bituminous concrete mixes using support vector machines and M5 model tree. International Journal of Pavement Research and Technology, 15, 86–97. https://doi.org/10.1007/s42947-021-00013-5

    Article  Google Scholar 

  24. Fadhil, T. H., Ahmed, T. M., & Al Mashhadany, Y. I. (2022). Application of artificial neural networks as design tool for hot mix asphalt. International Journal of Pavement Research and Technology, 15(2), 269–283. https://doi.org/10.1007/s42947-021-00065-7

    Article  Google Scholar 

  25. Leiva-Villacorta, F., Vargas-Nordcbeck, A., & Timm, D. H. (2017). Non-destructive evaluation of sustainable pavement technologies using artificial neural networks. International Journal of Pavement Research and Technology, 10, 139–147. https://doi.org/10.1016/j.ijprt.2016.11.006

    Article  Google Scholar 

  26. Saghafi, B., Hassani, A., Noori, R., & Bustos, M. G. (2009). Artificial neural networks and regression analysis for predicting faulting in jointed concrete pavements considering base condition. International Journal of Pavement Research and Technology, 2, 20–25.

    Google Scholar 

  27. Briegel, H.J., & Dunjko, T. P. (2017). Machine learning & artificial intelligence in the quantum domain, University of Innsbruck

  28. Sharifi, Y., & Tohidi, S. (2014). Lateral-torsional buckling capacity assessment of web opening steel girders by arti fi cial neural networks – elastic investigation, Front. Struct. Civil Engineering, 8, 167–177. https://doi.org/10.1007/s11709-014-0236-z

    Article  Google Scholar 

  29. Khasawneh, M. A. (2019). Investigation of factors affecting the behaviour of subgrade soils resilient modulus using robust statistical methods. International Journal of Pavement Engineering, 20, 1193–1206. https://doi.org/10.1080/10298436.2017.1394101

    Article  Google Scholar 

  30. Khasawneh, M. A., & Al-jamal, N. F. (2019). Modeling resilient modulus of fine-grained materials using different statistical techniques. Transportation Geotechnics. https://doi.org/10.1016/j.trgeo.2019.100263

    Article  Google Scholar 

  31. Alkheder, S., Taamneh, M., & Taamneh, S. (2016). Severity prediction of traffic accident using an artificial neural network: traffic accident severity prediction using artificial neural network severity prediction of traffic accident using an artificial neural network. Journal of Forecasting, 36, 100–108. https://doi.org/10.1002/for.2425

    Article  Google Scholar 

  32. NCHRP. (2004). Guide for Mechanistic -Empirical Design of new and rehailated pavement structures, NCHRP 1–37A Final Report, Appendix CC-4: Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures

  33. Taha, S., Gabr, A., Azam, A., & Shahdah, U. (2015). Modeling of California Bearing Ratio Using Basic Engineering Properties, 8th Int. Eng. Conf. Sharm Al-Sheikh, Egypt

  34. Taha, S., Gabr, A., & El-Badawy, S. (2019). Regression and neural network models for california bearing ratio prediction of typical granular materials in Egypt. Arabian Journal for Science and Engineering, 44, 8691–8705. https://doi.org/10.1007/s13369-019-03803-z

    Article  Google Scholar 

  35. Janjua, Z. S., & Chand, J. (2016). Correlation of CBR with index properties of soil. Internal Journal of Civil Engineering Technology, 7, 57–62.

    Google Scholar 

  36. Erzin, Y., & Turkoz, D. (2016). Use of neural networks for the prediction of the CBR value of some Aegean sands. Neural Computing and Applications, 27, 1415–1426. https://doi.org/10.1007/s00521-015-1943-7

    Article  Google Scholar 

  37. Jena, M., & Dehuri, S. (2020). Decision Tree for Classification and Regression: A State-of-the Art Review, 44, 405–420.

    Google Scholar 

  38. De Caigny, A., Coussement, K., & De Bock, K. W. (2018). A New hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269, 760–772. https://doi.org/10.1016/j.ejor.2018.02.009

    Article  MathSciNet  Google Scholar 

  39. Onyari, E. K., & Ilunga, F. M. (2013). Application of MLP neural network and M5P model tree in predicting streamflow: A case study of Luvuvhu catchment, South Africa. International Journal of Innovation, Management and Technology, 4(1), 11. https://doi.org/10.7763/IJIMT.2013.V4.347

    Article  Google Scholar 

  40. Czajkowski, M., & Kretowski, M. (2016). The role of decision tree representation in regression problems – An evolutionary perspective. Applied Soft Computing Journal, 48, 458–475. https://doi.org/10.1016/j.asoc.2016.07.007

    Article  Google Scholar 

  41. Yang, L., Liu, S., Tsoka, S., & Papageorgiou, L. G. (2017). A regression tree approach using mathematical programming. Expert Systems with Applications, 78, 347–357. https://doi.org/10.1016/j.eswa.2017.02.013

    Article  Google Scholar 

  42. Gunaydin, O., Ozbeyaz, A., & Soylemez, M. (2019). Estimating California bearing ratio using decision tree regression analysis using soil index and compaction parameters. International Journal of Intelligent Systems and Applications in Engineering 7(1): 30-33. https://doi.org/10.18201/ijisae.2019151249.

  43. Suthar, M., & Aggarwal, P. (2019). Modeling CBR value using RF and M5P techniques. Mendel, 25, 73–78.

    Article  Google Scholar 

  44. Hu, L. Y., Huang, M. W., Ke, S. W., & Tsai, C. F. (2016). The distance function effect on k-nearest neighbor classification for medical datasets. Springerplus, 5(1), 1–9. https://doi.org/10.1186/s40064-016-2941-7

    Article  CAS  Google Scholar 

  45. Ikeagwuani, C. C. (2022). Determination of unbound granular material resilient modulus with MARS, PLSR, KNN and SVM. International Journal of Pavement Research Technology, 15, 803–820. https://doi.org/10.1007/s42947-021-00054-w

    Article  Google Scholar 

  46. Raja, M. N. A., Shukla, S. K., & Khan, M. U. A. (2021). An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil. International Journal of Pavement Engineering https://doi.org/10.1080/10298436.2021.1904237.

  47. ASTM D2487. (2017). Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International https://doi.org/10.1520/d2487-06.

  48. AASHTO M145. (1991). Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. American Association of State Highway and Transportation Officials, Philadelphia, PA. https://doi.org/10.1520/d3282.

  49. Wang, Y., & Witten, I.H. (1997). Inducing model trees for continuous classes. European Conference on Machine Learning 1–10. http://www.cs.waikato.ac.nz/~ml/publications/1997/Wang-Witten-Induct.pdf.

  50. Landwehr, N., Hall, M., & Frank, E. (2005). Logistic model trees. Machine Learning, 59, 161–205. https://doi.org/10.1007/s10994-005-0466-3

    Article  Google Scholar 

  51. Lippmann, R. P. (1988). An introduction to computing with neural nets. ACM SIGARCH Computing Archit. News., 16, 7–25. https://doi.org/10.1145/44571.44572

    Article  Google Scholar 

  52. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (Adaptive Computation and Machine Learning series) (Illustrated). The MIT Press.

    Google Scholar 

  53. Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., Chen, Z., & Chen, D. (2020). GShard: scaling giant models with conditional computation and automatic sharding

  54. Bhandari, A. (2020). Feature scaling for machine learning: understanding the difference between normalization vs. Standardization, Anal. Vidhya

  55. Brownlee, J. (2016). How to work through a binary classification project in weka step-by step

  56. Siraj, F., Omer, E.A.O.A., & Hasan, R. (2012). Data mining and neural networks: The impact of data representation, in: Data Min. Neural Networks

  57. Mohatram, M., & Tewari, P. (2011). Applications of Artificial Neural Networks in Electric Power Industry: A Review, 4, 161–171.

    Google Scholar 

  58. Welsem, V., Wessels, L. F. A., Reinders, M. J. T., Van Welsem, T., & Petra, M. (2002). Representation and classification for high-throughput data. Int. Soc. Opt. Photonics., 4626, 226–237. https://doi.org/10.1117/12.472086

    Article  Google Scholar 

  59. Soleimanbeigi, A., & Hataf, N. (2005). Predicting ultimate bearing capacity of shallow foundations on reinforced cohesionless soils using artificial neural networks. Geosynthetics International, 12, 321–332. https://doi.org/10.1680/gein.2005.12.6.321

    Article  Google Scholar 

  60. University of Waikato, Class MultilayerPerceptron, (2020). https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html.

  61. Tu, L., Fowler, B., & Silver, D. L. (2010). CsMTL MLP For WEKA: neural network learning with inductive transfer. Twenty-Third International FLAIRS Conferene 128–133

  62. Das, S. K., & Basudhar, P. K. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics, 33, 454–459. https://doi.org/10.1016/j.compgeo.2006.08.006

    Article  Google Scholar 

  63. Ghorbani, B., Arulrajah, A., Narsilio, G., Horpibulsuk, S., & Bo, M. W. (2020). Development of genetic-based models for predicting the resilient modulus of cohesive pavement subgrade soils. Soils and Foundations, 60, 398–412. https://doi.org/10.1016/j.sandf.2020.02.010

    Article  Google Scholar 

  64. Nouman, M., Raja, A., & Kumar, S. (2021). Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique Geotextiles and Geomembranes Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial int. Geotextiles Geomembranes. https://doi.org/10.1016/j.geotexmem.2021.04.007

    Article  Google Scholar 

  65. Nouman, M., Raja, A., & Kumar, S. (2021). Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique. Geotextiles Geomembranes. https://doi.org/10.1016/j.geotexmem.2021.04.007

    Article  Google Scholar 

  66. Zhang, J., Peng, J., Zeng, L., Li, J., & Li, F. (2021). Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties. International Journal of Pavement Engineering, 22, 732–739.

    Article  Google Scholar 

  67. Harini, H., & Naagesh, S. (2014). Predicting CBR of fine grained soils by artificial neural network and multiple linear regression. International Journal of Civil Engineering, 5(2), 119–126.

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer R. Rabab’ah.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasawneh, M.A., Al-Akhrass, H.I., Rabab’ah, S.R. et al. Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques. Int. J. Pavement Res. Technol. 17, 306–324 (2024). https://doi.org/10.1007/s42947-022-00237-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00237-z

Keywords

Navigation