Skip to main content
Log in

Elevated Temperature Rheological Properties of Styrene-Butadiene-Modified Binders: Role of Molecular Structure

  • Review
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Polymer-modified binders are heated to the elevated temperatures during storage, transportation, and pavement construction. This study evaluates the role of molecular structure (linear, branched, high vinyl, and diblock) and concentration (2–7 wt%) of styrene-butadiene polymer on the rheological properties of the modified binder at elevated temperature. The rheological analysis was performed between 120 and 170 °C in rotational and oscillatory deformation modes in a dynamic shear rheometer. The results show that the molecular structure of the styrene-butadiene (SB) polymer significantly affects the elevated temperature rheological properties of the SB-modified binders (SB-MBs). The combination of radial branches and higher molecular weight in branched SB polymer results in SB-MBs with a stronger interconnected network. Consequently, compared to the other three SB polymers, the viscosity of the branched SB-MBs binders was 2–5 times higher at elevated temperatures, while the phase angle values were lower. Above 3 wt% of SB content, the influence of molecular structure becomes more prominent. Hence, at a fixed SB content, the modified binder with branched SB polymer needs to be maintained at higher temperatures during pavement construction related to the additional three SB polymers. On the other hand, diblock structure and lower molecular weight in diblock SB polymer result in SB-MBs with the lowest viscosity. In all the cases, two distinct rheological behavior was observed from the temperature sweep measurements, one between 120 and 140 °C and another between140 and 170 °C. The findings from the study are practically relevant while using SB-modified binders for pavement construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Airey, G. D. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel, 82(14), 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7

    Article  Google Scholar 

  2. Yildirim, Y. (2007). Polymer modified asphalt binders. Construction and Building Materials, 21(1), 66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007

    Article  Google Scholar 

  3. Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54(1), 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005

    Article  Google Scholar 

  4. Joohari, I. B., Maniam, S., & Giustozzi, F. (2022). Enhancing the storage stability of SBS-plastic waste modified bitumen using reactive elastomeric terpolymer. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-021-00132-z

    Article  Google Scholar 

  5. Zhang, C., Wang, H., & Yang, X. (2019). Low-temperature performance of SBS modified asphalt mixture in high altitude and cold regions. International Journal of Pavement Research and Technology, 12(1), 33–42. https://doi.org/10.1007/s42947-019-0005-4

    Article  Google Scholar 

  6. Zhang, C., Wang, H., You, Z., Gao, J., & Irfan, M. (2019). Performance test on styrene-butadiene-styrene (SBS) modified asphalt based on the different evaluation methods. Applied Sciences, 9(3), 467. https://doi.org/10.3390/app9030467

    Article  Google Scholar 

  7. Liang, M., Liang, P., Fan, W., Qian, C., Xin, X., Shi, J., & Nan, G. (2015). Thermo-rheological behavior and compatibility of modified asphalt with various styrene-butadiene structures in SBS copolymers. Materials and Design, 88, 177–185. https://doi.org/10.1016/j.matdes.2015.09.002

    Article  Google Scholar 

  8. Santagata, E., Baglieri, O., Dalmazzo, D., & Tsantilis, L. (2013). Evaluation of the anti-rutting potential of polymer-modified binders by means of creep-recovery shear tests. Materials and Structures/Materiaux et Constructions, 46(10), 1673–1682. https://doi.org/10.1617/s11527-012-0006-0

    Article  Google Scholar 

  9. Singh, B., Saboo, N., & Kumar, P. (2017). Effect of short-term aging on creep and recovery response of asphalt binders. Journal of Transportation Engineering, Part B: Pavements. https://doi.org/10.1061/JPEODX.0000018

    Article  Google Scholar 

  10. Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82. https://doi.org/10.1016/j.cis.2008.08.011

    Article  Google Scholar 

  11. Polacco, G., Stastna, J., Vlachovicova, Z., Biondi, D., & Zanzotto, L. (2004). Temporary networks in polymer-modified asphalts. Polymer Engineering and Science, 44(12), 2185–2193. https://doi.org/10.1002/pen.20246

    Article  Google Scholar 

  12. Reza, M., Ghasri, A., Nejad, F. M., & Kazemifard, S. (2013). Performance evaluation of SBS/sulfur modified bitumen. Journal of Applied Chemical Research, 20, 7–20.

    Google Scholar 

  13. Yan, C., Huang, W., Xiao, F., & Lv, Q. (2019). Influence of polymer and sulphur dosages on attenuated total reflection Fourier transform infrared upon styrene–butadiene–styrene-modified asphalt. Road Materials and Pavement Design, 20(7), 1586–1600. https://doi.org/10.1080/14680629.2018.1467336

    Article  Google Scholar 

  14. Dong, F., Zhao, W., Zhang, Y., Wei, J., Fan, W., Yu, Y., & Wang, Z. (2014). Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Construction and Building Materials, 62, 1–7. https://doi.org/10.1016/j.conbuildmat.2014.03.018

    Article  Google Scholar 

  15. Kumar, Y., Singh, S. K., Oberoi, D., Kumar, P., Mohanty, P., & Ravindranath, S. S. (2020). Effect of molecular structure and concentration of styrene-butadiene polymer on upper service temperature rheological properties of modified binders. Construction and Building Materials, 249, 118790. https://doi.org/10.1016/j.conbuildmat.2020.118790

    Article  Google Scholar 

  16. Kim, T. W., Baek, J., Lee, H. J., & Choi, J. Y. (2013). Fatigue performance evaluation of SBS modified mastic asphalt mixtures. Construction and Building Materials, 48, 908–916. https://doi.org/10.1016/j.conbuildmat.2013.07.100

    Article  Google Scholar 

  17. Han, S., Niu, D. Y., Liu, Y. M., Chen, D., & Liu, D. W. (2014). Analysis on the impact of the type and content of SBS on the performance of the modified asphalt mixture. Advanced Materials Research, 919–921, 1079–1084. https://doi.org/10.4028/www.scientific.net/amr.919-921.1079

    Article  Google Scholar 

  18. Laukkanen, O. V., Soenen, H., Winter, H. H., & Seppälä, J. (2018). Low-temperature rheological and morphological characterization of SBS modified bitumen. Construction and Building Materials, 179, 348–359. https://doi.org/10.1016/j.conbuildmat.2018.05.160

    Article  Google Scholar 

  19. Kumar, S. A., Sarvanan, U., Krishnan, J. M., & Veeraragavan, A. (2014). Rheological characterisation of modified binders at mixing and compaction temperature. International Journal of Pavement Engineering, 15(9), 767–785. https://doi.org/10.1080/10298436.2013.851792

    Article  Google Scholar 

  20. Saboo, N., Kumar, R., Kumar, P., & Gupta, A. (2018). Ranking the rheological response of SBS- and EVA-modified bitumen using MSCR and LAS tests. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002367

    Article  Google Scholar 

  21. Nciri, N., Kim, N., & Cho, N. (2017). New insights into the effects of styrene-butadiene-styrene polymer modifier on the structure, properties, and performance of asphalt binder: The case of AP-5 asphalt and solvent deasphalting pitch. Materials Chemistry and Physics, 193, 477–495. https://doi.org/10.1016/j.matchemphys.2017.03.014

    Article  Google Scholar 

  22. Schaur, A., Unterberger, S., & Lackner, R. (2017). Impact of molecular structure of SBS on thermomechanical properties of polymer modi fi ed bitumen. Bitumen, 96(September), 256–265.

    Google Scholar 

  23. Kök, B. V., Yilmaz, M., & Geçkil, A. (2013). Evaluation of low-temperature and elastic properties of crumb rubber- and SBS-modified bitumen and mixtures. Journal of Materials in Civil Engineering, 25(2), 257–265. https://doi.org/10.1061/(asce)mt.1943-5533.0000590

    Article  Google Scholar 

  24. Kumar, P., Chandra, S., & Bose, S. (2006). Strength characteristics of polymer modified mixes. International Journal of Pavement Engineering, 7(1), 63–71. https://doi.org/10.1080/10298430500495147

    Article  Google Scholar 

  25. Xie, J., Yang, Y., Lv, S., Zhang, Y., Zhu, X., & Zheng, C. (2019). Investigation on rheological properties and storage stability of modified asphalt based on the grafting activation of crumb rubber. Polymers, 11, 1563.

    Article  Google Scholar 

  26. Airey, G. D. (2004). Styrene butadiene styrene polymer modification of road bitumens. Journal of Materials Science, 39(3), 951–959. https://doi.org/10.1023/B:JMSC.0000012927.00747.83

    Article  Google Scholar 

  27. Alonso-romero, S., Medina-torres, L., Zitzumbo, R., Nuñez-ramirez, M., Medina-torres, L., & Zitzumbo, R. (2019). Styrene-butadiene branched star-shaped asphalt modifiers: Synthesis and mechanical characterization. Chemical Engineering Communications. https://doi.org/10.1080/00986445.2019.1631814

    Article  Google Scholar 

  28. Luo, Y., Zhang, Z., Zhang, H., Zhang, M., Zhang, K., & Zhao, Y. (2021). Performance optimization of high viscosity modified asphalt with SBS composite modifier and comparison of different high viscosity modified asphalts. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-021-00095-1

    Article  Google Scholar 

  29. Singh, S. K., Kumar, Y., & Ravindranath, S. S. (2018). Thermal degradation of SBS in bitumen during storage : Influence of temperature, SBS concentration, polymer type and base bitumen. Polymer Degradation and Stability, 147(July 2017), 3910.

    Google Scholar 

  30. Zhang, Q., Wang, T., Fan, W., Ying, Y., & Wu, Y. (2014). Evaluation of the properties of bitumen modified by SBS copolymers with different styrene-butadiene structure. Journal of Applied Polymer Science, 131(12), 1–7. https://doi.org/10.1002/app.40398

    Article  Google Scholar 

  31. Bennert, T., Reinke, G., Mogawer, W., & Mooney, K. (2010). Assessment of workability and compactability of warm-mix asphalt. Transportation Research Record, 2180, 36–47. https://doi.org/10.3141/2180-05

    Article  Google Scholar 

  32. Nivitha, M. R., & Murali Krishnan, J. (2020). Rheological characterisation of unmodified and modified bitumen in the 90–200°C temperature regime. Road Materials and Pavement Design, 21(5), 1341–1358. https://doi.org/10.1080/14680629.2018.1552890

    Article  Google Scholar 

  33. Poovaneshvaran, S., Zheng, L. W., Hasan, M. R. M., Yang, X., & Diab, A. (2021). Workability, compactibility and engineering properties of rubber-modified asphalt mixtures prepared via wet process. International Journal of Pavement Research and Technology, 14(5), 560–569. https://doi.org/10.1007/s42947-020-1006-z

    Article  Google Scholar 

  34. West, R. C., Watson, D. E., Turner, P. A., & Casola, J. R. (2010). Mixing and compaction temperatures of asphalt binders in hot-mix asphalt (Issue Project 9–39).

  35. Sohel Islam, S. K., Singh, S. K., Ransinchung, G. D., & Ravindranath, S. S. (2022). Performance deterioration of SBS-modified asphalt mix: impact of elevated storage temperature and SBS concentration of modified binder. Journal of Materials in Civil Engineering, 34(3), 4021475. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004092

    Article  Google Scholar 

  36. Wang, H., Dang, Z., You, Z., & Cao, D. (2012). High-temperature viscosity performance of crumb-rubber-modified binder with warm mix asphalt additives. Journal of Testing and Evaluation, 40(5), 687–696. https://doi.org/10.1520/JTE20120064

    Article  Google Scholar 

  37. Xu, J., Gong, Y., Chen, L. B., Ma, T., Zeng, J. C., Yan, E. H., & Xiao, G. S. (2020). High-temperature performance of asphalt mixtures: preliminary analysis for the standard technical index based on gray relational analysis method. Advances in Materials Science and Engineering. https://doi.org/10.1155/2020/5818036

    Article  Google Scholar 

  38. Bulatović, V. O., Rek, V., & Marković, K. J. (2014). Effect of polymer modifiers on the properties of bitumen. Journal of Elastomers and Plastics, 46(5), 448–469. https://doi.org/10.1177/0095244312469964

    Article  Google Scholar 

  39. Fernandes, M. R. S., Forte, M. M. C., & Leite, L. F. M. (2008). Rheological evaluation of polymer-modified asphalt binders. Materials Research, 11(3), 381–386. https://doi.org/10.1590/S1516-14392008000300024

    Article  Google Scholar 

  40. Lv, Q., Huang, W., Sadek, H., Xiao, F., & Yan, C. (2019). Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg Wheel-Tracking Device test and Multiple Stress Creep Recovery test. Construction and Building Materials, 206, 62–70. https://doi.org/10.1016/j.conbuildmat.2019.02.015

    Article  Google Scholar 

  41. Fu, H., Xie, L., Dou, D., Li, L., Yu, M., & Yao, S. (2007). Storage stability and compatibility of asphalt binder modified by SBS graft copolymer. Construction and Building Materials, 21(7), 1528–1533. https://doi.org/10.1016/j.conbuildmat.2006.03.008

    Article  Google Scholar 

  42. Saboo, N., Das, B. P., & Kumar, P. (2016). New phenomenological approach for modeling fatigue life of asphalt mixes. Construction and Building Materials, 121, 134–142. https://doi.org/10.1016/j.conbuildmat.2016.05.147

    Article  Google Scholar 

  43. Masson, J. F., Pelletier, L., & Collins, P. (2001). Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. Journal of Applied Polymer Science, 79(6), 1034–1041. https://doi.org/10.1002/1097-4628(20010207)79:6%3c1034::AID-APP60%3e3.0.CO;2-4

    Article  Google Scholar 

  44. Canto, L. B., Mantovani, G. L., Deazevedo, E. R., Bonagamba, T. J., Hage, E., & Pessan, L. A. (2006). Molecular characterization of styrene-butadiene-styrene block copolymers (SBS) by GPC, NMR, and FTIR. Polymer Bulletin, 57(4), 513–524. https://doi.org/10.1007/s00289-006-0577-4

    Article  Google Scholar 

  45. Wang, K., Yuan, Y., Han, S., & Yang, Y. (2019). Application of FTIR spectroscopy with solvent-cast film and PLS regression for the quantification of SBS content in modified asphalt. International Journal of Pavement Engineering, 20(11), 1336–1341. https://doi.org/10.1080/10298436.2017.1413242

    Article  Google Scholar 

  46. Nie, Y., Gao, W., Zhou, C., Yu, P., & Song, X. (2021). Evaluation of ageing behaviors of asphalt binders using FTIR tests. International Journal of Pavement Research and Technology, 14(5), 615–624. https://doi.org/10.1007/s42947-020-0210-1

    Article  Google Scholar 

  47. Singh, B., Saboo, N., & Kumar, P. (2017). Use of Fourier transform infrared spectroscopy to study ageing characteristics of asphalt binders. Petroleum Science and Technology, 35, 1648–1654. https://doi.org/10.1080/10916466.2017.1350710

    Article  Google Scholar 

  48. Karatrantos, A., Composto, R. J., Winey, K. I., Kröger, M., & Clarke, N. (2019). Modeling of entangled polymer diffusion in melts and nanocomposites: a review. Polymers, 11(5), 876. https://doi.org/10.3390/polym11050876

    Article  Google Scholar 

  49. Liu, P., Liu, W., Wang, W. J., Li, B. G., & Zhu, S. (2017). A comprehensive review on controlled synthesis of long-chain branched polyolefins: Part 3, characterization of long-chain branched polymers. Macromolecular Reaction Engineering. https://doi.org/10.1002/mren.201600012

    Article  Google Scholar 

  50. Doerpinghaus, P. J., & Baird, D. G. (2003). Separating the effects of sparse long-chain branching on rheology from those due to molecular weight in polyethylenes. Journal of Rheology, 47(3), 717–736. https://doi.org/10.1122/1.1567751

    Article  Google Scholar 

  51. Namba, S., Tsukahara, Y., Kaeriyama, K., Okamoto, K., & Takahashi, M. (2000). Bulk properties of multibranched polystyrenes from polystyrenes macromonomers: Rheological behavior I. Polymer, 41(14), 5165–5171. https://doi.org/10.1016/S0032-3861(99)00744-2

    Article  Google Scholar 

  52. Sugimoto, M., Suzuki, Y., Hyun, K., Ahn, K. H., Ushioda, T., Nishioka, A., Taniguchi, T., & Koyama, K. (2006). Melt rheology of long-chain-branched polypropylenes. Rheologica Acta, 46(1), 33–44. https://doi.org/10.1007/s00397-005-0065-z

    Article  Google Scholar 

  53. Chen, J.-S., Liao, M.-C., & Tsai, H.-H. (2002). Evaluation and optimization of the engineering properties of polymer-modified asphalt. Practical Failure Analysis, 2(3), 75–83. https://doi.org/10.1007/bf02719194

    Article  Google Scholar 

  54. Chen, J. S., Liao, M. C., & Lin, C. H. (2003). Determination of polymer content in modified bitumen. Materials and Structures/Materiaux et Constructions, 36(263), 594–598. https://doi.org/10.1617/13870

    Article  Google Scholar 

  55. Teltayev, B., Izmailova, G., Bortolotti, V., Spadafora, A., Oliviero Rossi, C., & Amerbayev, Y. (2015). Polymer modified bitumen: Rheological properties and structural characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 390–397. https://doi.org/10.1016/j.colsurfa.2015.02.048

    Article  Google Scholar 

  56. Polacco, G., Stastna, J., Biondi, D., & Zanzotto, L. (2006). Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Current Opinion in Colloid and Interface Science, 11(4), 230–245. https://doi.org/10.1016/j.cocis.2006.09.001

    Article  Google Scholar 

  57. Singh, B., & Kumar, P. (2019). Effect of polymer modification on the ageing properties of asphalt binders: Chemical and morphological investigation. Construction and Building Materials, 205, 633–641. https://doi.org/10.1016/j.conbuildmat.2019.02.050

    Article  Google Scholar 

  58. Soenen, H., Lu, X., & Redelius, P. (2009). The morphology of SBS modified bitumen in binders and in asphalt mix. Advanced Testing and Characterization of Bituminous Materials. https://doi.org/10.1201/9780203092989.ch16

    Article  Google Scholar 

  59. Sun, D., Zhang, L., & Zhang, X. (2011). Quantification of SBS content in SBS polymer modified asphalt by FTIR. Advanced Materials Research, 287–290, 953–960. https://doi.org/10.4028/www.scientific.net/AMR.287-290.953

    Article  Google Scholar 

  60. Wang, W. J., Kharchenko, S., Migler, K., & Zhu, S. (2004). Triple-detector GPC characterization and processing behavior of long-chain-branched polyethylene prepared by solution polymerization with constrained geometry catalyst. Polymer, 45(19), 6495–6505. https://doi.org/10.1016/j.polymer.2004.07.035

    Article  Google Scholar 

  61. Hung, S. S., Farshidi, F., Jones, D., & Harvey, J. T. (2015). Comparison of concentric cylinder and parallel plate geometries for asphalt binder testing with a dynamic shear rheometer. Transportation Research Record Journal of the Transportation Research Board, 2505, 108–114. https://doi.org/10.3141/2505-14

    Article  Google Scholar 

  62. Polacco, G., Vacin, O. J., Biondi, D., Stastna, J., & Zanzotto, L. (2003). Dynamic master curves of polymer modified asphalt from three different geometries abstract. Transportation Research Record: Journal of the Transportation Research Board, 13(3), 118–124. https://doi.org/10.1515/arh-20

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge department of polymer and process engineering for providing testing instrument facility. The authors thankful to ‘The department of Biotechnology’ for providing fluorescent microscopy experiments facility.

Funding

This work is supported by a financial grant from SERB, India (ECR/2016/001427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sham S. Ravindranath.

Ethics declarations

Consent to publication

We confirm that the manuscript, or its contents in this or other forms, has not been published previously by any of the authors and/or is not under consideration for publication in other journal at the time of submission. This is our original work and proper references have been cited as per requirement.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Pandey, A., Kumar, P. et al. Elevated Temperature Rheological Properties of Styrene-Butadiene-Modified Binders: Role of Molecular Structure. Int. J. Pavement Res. Technol. 16, 1599–1617 (2023). https://doi.org/10.1007/s42947-022-00215-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00215-5

Keywords

Navigation