Skip to main content
Log in

Laboratory Evaluation on Non-linear Dynamic Performance of Modified Asphalt Binder Resistance to Permanent Deformations

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The present study was conducted to specifically evaluate performance of asphalt binder modified by polymers and nanomaterial additives. Nano-silica, EVA (ethylene–vinyl-acetate copolymer), and SBS (styrene–butadiene–styrene) were used as asphalt binder modifiers against permanent deformation. Multiple stress creep-recovery (MSCR) tests were performed to scrutinize resistance of the asphalt binder to rutting at three temperatures of 58, 64, and 70 °C. In the MSCR test, non-linear properties of asphalt binder were assessed. In this paper, three critical parameters of non-recoverable creep compliance (Jnr), recovery creep percentage (R%), and the difference between non-recoverable creep compliance at high and low stresses (Jnrdiff) were measured. Besides, loading capacity of the modified asphalt binder was evaluated. The results represented that addition of EVA, SBS, and nano-silica increased rutting resistance and also delayed elasticity. In addition, it was observed that addition of these additives as a modifier to asphalt binder leads to the increased traffic loading grades. In improving the non-recoverable creep compliance parameter, the best performance was related to EVA, SBS, and nano-silica, respectively. In improving the recovery creep percentage, the procedure was the same and EVA had the best performance, with the difference that in this parameter nano-silica performed better than SBS. It was also found that 6% of nano-silica could bring performance of PG 58-22 closer to PG 64-22 asphalt binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carreaul, P. J., Bousmina, M., & Bonniotl, F. (2000). The viscoelastic properties of polymer-modified asphalts. Canadian Journal of Chemical Engineering, 78(3), 495–503. https://doi.org/10.1002/cjce.5450780308

    Article  Google Scholar 

  2. Behnood, A., & Modiri Gharehveran, M. (2018). Morphology, rheology and physical properties of polymer-modified asphalt binders. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2018.10.049

    Article  Google Scholar 

  3. Baskara, S. N., Yaacob, H., Hainin, M. R., & Hassan, S. A. (2016). Accident due to pavement condition. Highway and Transportation Engineering, 78(7). https://doi.org/10.11113/jt.v78.9494

  4. Anastasopoulos, PCh., Mannering, F. L., Shankar, V. N., & Haddock, J. E. (2012). A study of factors affecting highway accident rates using the random-parameters tobit model. Accident Analysis and Prevention, 45, 628–633. https://doi.org/10.1016/j.aap.2011.09.015

    Article  Google Scholar 

  5. Ziari, H., Amini, A., Goli, A., & Mirzaeiyan, D. (2018). Predicting rutting performance of carbon nano tube (CNT) asphalt binders using regression models and neural networks. Construction and Building Materials, 160, 415–426. https://doi.org/10.1016/j.conbuildmat.2017.11.071

    Article  Google Scholar 

  6. Ziari, H., Nasiri, E., Amini, A., & Ferdosian, O. (2019). The effect of EAF dust and waste PVC on moisture sensitivity, rutting resistance, and fatigue performance of asphalt binders and mixtures. Construction and Building Materials, 203, 188–200. https://doi.org/10.1016/j.conbuildmat.2019.01.101

    Article  Google Scholar 

  7. Ghanoon, S. A., & Tanzadeh, J. (2019). Laboratory evaluation of nano-silica modification on rutting resistance of asphalt Binder. Construction and Building Materials, 223, 1074–1082. https://doi.org/10.1016/j.conbuildmat.2019.07.295

    Article  Google Scholar 

  8. Sun, Y., Wang, W., & Chen, J. (2019). Investigating impacts of warm-mix asphalt technologies and high reclaimed asphalt pavement binder content on rutting and fatigue performance of asphalt binder through MSCR and LAS tests. Journal of Cleaner Production, 219, 879–893. https://doi.org/10.1016/j.jclepro.2019.02.131

    Article  Google Scholar 

  9. Brule, B., Brion, Y., Tanguy, A. (1988). Paving asphalt polymer blends: relationships between composition, structure and properties. In Association of Asphalt Paving Technologists Proc. http://refhub.elsevier.com/S0950-0618(19)32698-4/h0005

  10. Yan, K., Tian, S., Chen, J., & Liu, J. (2020). High temperature rheological properties of APAO and EVA compound modified asphalt. Construction and Building Materials, 233, 117246. https://doi.org/10.1016/j.conbuildmat.2019.117246

    Article  Google Scholar 

  11. Tam, A., Park, D., Le, T., & Kim, J. (2020). Evaluation on fatigue cracking resistance of fiber grid reinforced asphalt concrete with reflection cracking rate computation. Construction and Building Materials, 239, 117873. https://doi.org/10.1016/j.conbuildmat.2019.117873

    Article  Google Scholar 

  12. Yang, X., Shen, A., Su, Y., & Zhao, W. (2020). Effects of alumina trihydrate (ATH) and organic montmorillonite (OMMT) on asphalt fume emission and flame retardancy properties of SBS-modified asphalt. Construction and Building Materials, 236, 117576. https://doi.org/10.1016/j.conbuildmat.2019.117576

    Article  Google Scholar 

  13. Özen, H. (2011). rutting evaluation of hydrated lime and SBS modified asphalt mixtures for laboratory and field compacted samples. Construction and Building Materials, 25(2), 756–765. https://doi.org/10.1016/j.conbuildmat.2010.07.010

    Article  Google Scholar 

  14. Al-Hadidy, A. I., & Yi-qiu, T. (2011). Effect of styrene-butadiene-styrene on the properties of asphalt and stone-matrix-asphalt mixture. Journal of Material and Civil Engineering, 23 (4). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000185.

  15. Mirsepahi, M., Tanzadeh, J., & Ghanoon, S. A. (2020). Laboratory evaluation of dynamic performance and viscosity improvement in modified bitumen by combining nanomaterials and polymer. Construction and Building Materials, 233, 117183. https://doi.org/10.1016/j.conbuildmat.2019.117183

    Article  Google Scholar 

  16. Liang, M., Ren, S., Fan, W., Xin, X., Shi, J., & Luo, H. (2017). Rheological property and stability of polymer modified asphalt: Effect of various vinyl-acetate structures in EVA copolymers. Construction and Building Materials, 137, 367–380. https://doi.org/10.1016/j.conbuildmat.2017.01.123

    Article  Google Scholar 

  17. Ghanoon, S. A., Tanzadeh, J., & Mirsepahi, M. (2020). Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder. Construction and Building Materials, 238, 117592. https://doi.org/10.1016/j.conbuildmat.2019.117592

    Article  Google Scholar 

  18. Isacsson, U., & Lu, X. (1995). Testing and appraisal of polymer modified road bitumens—State of the art. Materials and Structures, 28(3), 139–159. https://doi.org/10.1007/BF02473221

    Article  Google Scholar 

  19. Al-Dubabe, I., Wahhab, H., Asi, I., & Ali, M. (1998). Polymer modification of Arab asphalt. Journal of Materials in Civil Engineering, 10(3), 161–167. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:3(161)

    Article  Google Scholar 

  20. Özen, H., Aksoy, A., Tayfur, S., & Çelik, F. (2008). Laboratory performance comparison of the elastomer-modified asphalt mixtures. Building and Environment, 43(7), 1270–1277. https://doi.org/10.1016/j.buildenv.2007.03.010

    Article  Google Scholar 

  21. González, V., Martínez-Boza, F. J., Navarro, F. J., Gallegos, C., Pérez-Lepe, A., & Páez, A. (2010). Thermomechanical properties of bitumen modified with crumb tire rubber and polymeric additives. Fuel Processing Technology, 91(9), 1033–1039. https://doi.org/10.1016/j.fuproc.2010.03.009

    Article  Google Scholar 

  22. Saeed Ghaffarpour Jahromi. (2009). Ali Khodaii, Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23, 2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027

    Article  Google Scholar 

  23. González, V., Martínez-Boza, F. J., Gallegos, C., Pérez-Lepe, A., & Páez, A. (2012). A study into the processing of bitumen modified with tire crumb rubber and polymeric additives. Fuel Processing Technology, 95, 137–143. https://doi.org/10.1016/j.fuproc.2011.11.018

    Article  Google Scholar 

  24. Yao, H., You, Z., Li, L., Goh, S. W., Lee, C. H., Yap, Y. K., & Shi, X. (2013). Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Construction and Building Materials, 38, 327–337. https://doi.org/10.1016/j.conbuildmat.2012.08.004

    Article  Google Scholar 

  25. Behnood, A., & Olek, J. (2017). Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Construction and Building Materials, 151, 464–478. https://doi.org/10.1016/j.conbuildmat.2017.06.115

    Article  Google Scholar 

  26. You, Z., Mills-Beale, J., Foley, J. M., Roy, S., Odegard, G. M., & Dai, Q. (2011). Shu Wei Goh, Nanoclay-modified asphalt materials: Preparation and characterization. Construction and Building Materials, 25, 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070

    Article  Google Scholar 

  27. Polacco, G., Stastna, J., Biondi, D., & Zanzotto, L. (2006). Relation between polymer architecture and non-linear viscoelastic behavior of modified asphalts. Current Opinion in Colloid and Interface Science, 11(4), 230–245. https://doi.org/10.1016/j.cocis.2006.09.001

    Article  Google Scholar 

  28. Morgan, P., & Mulder, A. (1995). The Shell bitumen industrial handbook. Shell Bitumen. https://perma.cc/S348-XHFQ

  29. Gama, D., Rosa Júnior, J., de Melo, T., & Rodrigues, J. (2016). Rheological studies of asphalt modified with elastomeric polymer. Construction and Building Materials, 106, 290–295. https://doi.org/10.1016/j.conbuildmat.2015.12.142

    Article  Google Scholar 

  30. Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005

    Article  Google Scholar 

  31. Isacsson, U., & Lu, X. (1997). On polymer modified road bitumens [doctoral dissertation]. KTH Royal Institute of Technology. https://perma.cc/S348-XHFQ

  32. Stroup-Gardiner, M., & Newcomb, D. E. (1995). Polymer literature review. Minnesota Department of Transportation. Report No.: MN/RC-95/27. https://perma.cc/84ZH-EEYS

  33. Asphalt Institute; Eurobitume. (2015). The bitumen industry—A global perspective (2nd ed.). Asphalt Institute. https://perma.cc/HFF7-D3BZ

  34. Kalantar, Z. N., KarimMahre, M. R., & Mahrez, A. (2012). A review of using waste and virgin polymer in pavement. Construction and Building Materials, 33, 55–62. https://doi.org/10.1016/j.conbuildmat.2012.01.009

    Article  Google Scholar 

  35. Ouyang, C., Wang, S., Zhang, Y., & Zhang, Y. (2006). Improving the aging resistance of styrene–butadiene–styrene tri-block copolymer modified asphalt by addition of antioxidants. Polymer Degradation and Stability, 91(4), 795–804. https://doi.org/10.1016/j.polymdegradstab.2005.06.009

    Article  Google Scholar 

  36. Behnood, A., & Olek, J. (2017). Stress-dependent behavior and rutting resistance of modified asphalt binders: An MSCR approach. Construction and Building Materials, 157, 635–646. https://doi.org/10.1016/j.conbuildmat.2017.09.138

    Article  Google Scholar 

  37. Jafari, M., Babazadeh, A., & Aflaki, S. (2015). Effects of stress levels on creep and recovery behavior of modified asphalt binders with the same continuous performance grades. Transportation Research Record: Journal of the Transportation Research Board, 2505, 15–23. https://doi.org/10.3141/2505-03

    Article  Google Scholar 

  38. Panda, M., & Mazumdar, M. (1999). Engineering properties of EVA-modified bitumen binder for paving mixes. Journal of Materials in Civil Engineering, 11(2), 131–137. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:2(131)

    Article  Google Scholar 

  39. Sengoz, B., & Isikyakar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials, 22(9), 1897–1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013

    Article  Google Scholar 

  40. Khattak, M. J., Khattab, A., Rizvi, H. R., & Zhang, P. (2012). The impact of carbon nano-fiber modification on asphalt binder rheology. Construction and Building Materials, 30, 257–264. https://doi.org/10.1016/j.conbuildmat.2011.12.022

    Article  Google Scholar 

  41. Hamedi, G. H., & Moghadas Nejad, F. (2016). Estimating the moisture damage of asphalt mixture modified with nano zinc oxide. Materials and Structures, 49, 1165–1174. https://doi.org/10.1617/s11527-015-0566-x

    Article  Google Scholar 

  42. Marva, M. H., Louay, N. M., Cooper, S. B., & Heather, D. (2011). Evaluation of nano–titanium dioxide additive on asphalt binder aging properties. Transportation Research Record: Journal of the Transportation Research Board, 2207(1). https://doi.org/10.3141/2207-02

  43. Li, J., Yang, S., Muhammad, Y., Su, Zh., & Yang, J. (2019). Studies on the properties of modified heavy calcium carbonate and SBS composite modified asphalt. Construction and Building Materials, 218, 413–423. https://doi.org/10.1016/j.conbuildmat.2019.05.139

    Article  Google Scholar 

  44. Jahromi, G., & Khodaii, S. (2009). Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23(8), 2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027

    Article  Google Scholar 

  45. Saltan, M., Terzi, S., & Karahancer, S. (2018). Performance analysis of nano modified bitumen and hot mix asphalt. Construction and Building Materials, 173, 228–237. https://doi.org/10.1016/j.conbuildmat.2018.04.014

    Article  Google Scholar 

  46. Chelovian, A., & Shafabakhsh, G. (2016). Laboratory evaluation of nano Al2O3 effect on dynamic performance of stone mastic. International Journal of Pavement Research and Technology. https://doi.org/10.1016/j.ijprt.2016.11.004

    Article  Google Scholar 

  47. Bhat, F. S., & Shafi Mir, M. (2020). Investigating the effects of nano Al2O3 on high and intermediate temperature performance properties of asphalt binder. Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2020.1778509

    Article  Google Scholar 

  48. Crucho, J., Picado-Santos, L., Neves, J., & Capitão, S. (2019). A review of nanomaterials’ effect on mechanical performance and aging of asphalt mixtures. Applied Science, 9, 3657. https://doi.org/10.3390/app9183657

    Article  Google Scholar 

  49. Kordi, Z., & Shafabakhsh, G. (2017). Evaluating mechanical properties of stone mastic asphalt modified with nano Fe2O3. Construction and Building Materials, 134, 530–539. https://doi.org/10.1016/j.conbuildmat.2016.12.202

    Article  Google Scholar 

  50. Cai, L., Shi, X., & Xue, J. (2018). Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS. Construction and Building Materials, 172, 204–211. https://doi.org/10.1016/j.conbuildmat.2018.03.187

    Article  Google Scholar 

  51. Han, L., Zheng, M., Li, J., Li, Y., Zhu, Y., & Ma, Q. (2017). Effect of nano silica and pretreated rubber on the properties of terminal blend crumb rubber modified asphalt. Construction and Building Materials, 157, 277–291. https://doi.org/10.1016/j.conbuildmat.2017.08.187

    Article  Google Scholar 

  52. Saltan, M., Terzi, S., & Karahancer, S. (2017). Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, 156, 976–984. https://doi.org/10.1016/j.conbuildmat.2017.09.069

    Article  Google Scholar 

  53. Shi, X., Cai, L., Wei, X., Fan, J., & Wang, X. (2018). Effects of nanosilica and rock asphalt on rheological properties of modified bitumen. Construction and Building Materials, 161, 705–714. https://doi.org/10.1016/j.conbuildmat.2017.11.162

    Article  Google Scholar 

  54. Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D, Yap, Y. K., Shi, X., & Goh, S. W. (2012). Properties and chemical bonding of asphalt and asphalt mixtures modified with nanosilica. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690

  55. Tanzadeh, J., & Shahrezagamasaei, R. (2017). Laboratory assessment of hybrid fiber and nano-silica on reinforced porous asphalt mixtures. Construction and Building Materials, 144, 260–270. https://doi.org/10.1016/j.conbuildmat.2017.03.184

    Article  Google Scholar 

  56. Tanzadeh, J., Shahrezagamasaei, R., & Ramzanniyagilani, F. (2019). Laboratory evaluation on the performance comparison between OGFC asphalt reinforcement with fibers and modified with nanosilica. Testing and Evaluation, 48(1), 487–501. https://doi.org/10.1520/JTE20170546

    Article  Google Scholar 

  57. Leiva-Villacorta, F., & Vargas-Nordcbeck, A. (2019). Optimum content of nano-silica to ensure proper performance of an asphalt binder. Road Materials and Pavement Design, 20(2), 414–425. https://doi.org/10.1080/14680629.2017.1385510

    Article  Google Scholar 

  58. Bhat, F. S., & Mir, M. S. (2019). Performance evaluation of nanosilica-modified asphalt binder. Innovative Infrastructure Solutions, 4, 63. https://doi.org/10.1007/s41062-019-0249-5

    Article  Google Scholar 

  59. Bhat, F. S., & Mir, M. S. (2021). Rheological investigation of asphalt binder modified with nanosilica. International Journal of Pavement Research and Technology, 14, 276–287. https://doi.org/10.1007/s42947-020-0327-2

    Article  Google Scholar 

  60. Cai, L., Shi, X., & Xue, J. (2018). Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS. Construction and Building Materials, 172(30), 204–211. https://doi.org/10.1016/j.conbuildmat.2018.03.187

    Article  Google Scholar 

  61. ASTM D113-07. (2007). Standard test method for ductility of bituminous materials (withdrawn 2016). ASTM International. www.astm.org, https://doi.org/10.1520/D0113-07

  62. ASTM D36/D36M-14e1. (2014). Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM International. www.astm.org, https://doi.org/10.1520/D0036_D0036M-14E01

  63. ASTM D5/D5M-13. (2013). Standard test method for penetration of bituminous materials. ASTM International. www.astm.org. https://doi.org/10.1520/D0005_D0005M-13

  64. ASTM D92-18. (2018). Standard test method for flash and fire points by Cleveland open cup tester. ASTM International. www.astm.org. https://doi.org/10.1520/D0092-18

  65. Chen, J., Liao, M., & Shiah, M. (2002). Asphalt modified by styrene-butadiene-styrene triblock copolymer: Morphology and model. Journal of Materials in Civil Engineering, 14(3), 224–229. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(224)

    Article  Google Scholar 

  66. Chen, J. S., Liao, M. C., & Tsai, H. H. (2002). Evaluation and optimization of the engineering properties of polymer-modified asphalt. Practical Failure Analysis, 2(3), 75–83. https://doi.org/10.1007/BF02719194

    Article  Google Scholar 

  67. ASTM C1738/C1738M-18. (2018). Standard practice for high-shear mixing of hydraulic cement pastes. ASTM International. www.astm.org. https://doi.org/10.1520/C1738_C1738M-18

  68. ASTM D2872-19. (2019). Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM International. www.astm.org. https://doi.org/10.1520/D2872-19

  69. ASTM D7405-15. (2015). Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer. ASTM International. www.astm.org. https://doi.org/10.1520/D7405-15

  70. AASHTO T350-14. (2018). Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). https://perma.cc/9QXU-JT4S

  71. Ali, A., Kim, H., Mazumder, M., Lee, M., & Lee, S. (2018). Multiple stress creep recovery (MSCR) characterization of polymer modified asphalt binder containing wax additives. International Journal of Pavement Research and Technology. https://doi.org/10.1016/j.ijprt.2018.05.001

    Article  Google Scholar 

  72. Zhang, L., Xing, C., Gao, F., Li, T., & Tan, Y. (2016). Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt. Construction and Building Materials, 127, 466–474. https://doi.org/10.1016/j.conbuildmat.2016.10.010

    Article  Google Scholar 

  73. AASHTO M332 (2014). Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. https://perma.cc/E45S-H9LA

  74. D’Angelo, J. A. (2009). The relationship of the MSCR test to rutting. Road Materials and Pavement Design, 10(S1), 61–80. https://doi.org/10.1080/14680629.2009.9690236

    Article  Google Scholar 

  75. Bastos, J., Babadopulos, L., & Soares, J. (2017). Relationship between multiple stress creep recovery (MSCR) binder test results and asphalt concrete rutting resistance in Brazilian roadways. Construction and Building Materials, 145(2017), 20–27. https://doi.org/10.1016/j.conbuildmat.2017.03.216

    Article  Google Scholar 

  76. D’Angelo, J., Kluttz, R., Dongré, R., Stephens, K., & Zanzotto, L. (2007). Revision of the Superpave high temperature binder specification: the multiple stress creep recovery test. Journal of the Association of Asphalt Paving Technology, 76, 123–162.

    Google Scholar 

  77. Lu, X., Said, S., Soenen, H., & Heyrman, S. (2016). Multiple stress creep and recovery tests of bituminous binders and correlation to asphalt concrete rutting performance. International Society for Asphalt Pavements (ISAP) Symposium. https://perma.cc/Q2BV-FWRE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Alireza Ghanoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We further confirm that any aspect of the work covered in this manuscript that has involved either experimental animals or human patients has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanoon, S., Tanzadeh, J., Khodaparast, M. et al. Laboratory Evaluation on Non-linear Dynamic Performance of Modified Asphalt Binder Resistance to Permanent Deformations. Int. J. Pavement Res. Technol. 15, 899–914 (2022). https://doi.org/10.1007/s42947-021-00061-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00061-x

Keywords

Navigation