Skip to main content
Log in

Dual template-induced construction of three-dimensional porous SiO2/NC/Co-CNTs heterostructure with highly dispersed active sites for efficient oxygen evolution reaction

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

The development and exploration of efficient and economical electrocatalysts for oxygen evolution reaction (OER) represents the main bottleneck to unlocking a sustainable energy scenario based on electrocatalytic water splitting. Nanoscale integration of three-dimensional (3D) porous heterostructure with highly dispersed active sites and good structural stability is challenging. Herein, a dual template route is developed to construct the 3D porous SiO2/nitrogen-doped carbon (NC)/Co-carbon nanotubes (CNTs) heterostructure. Importantly, the hard template (SiO2 nanospheres) contributes to 3D porous structure, increases the specific surface area, and promotes the contact area of the electrolyte. At the same time, the soft template (basic zinc carbonate) can control the growth of 1D CNTs and facilitate the exposure of the active sites. Apparently, 3D porous SiO2/NC/Co-CNTs heterostructure inherits highly dispersed Co nanoparticles coated by NC. CNTs conductive channels and abundant N heteroatoms doping are reasonably constructed by a dual template strategy. Therefore, SiO2/NC/Co-CNTs catalyst provides an extraordinary activity for the OER in alkaline media, with a low overpotential of 298 mV at a current density of 10 mA·cm−2. Furthermore, SiO2/NC/Co-CNTs heterostructure enables excellent long-term durability with a 10 mV decay in overpotential after 3000 cyclic voltammetry cycles, and 97% remain in current density over 20 h. It is believed that this dual template strategy can provide a new and simple way to construct a highly dispersed active site in electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data generated during and/or analyzed in this article are available from the corresponding author on reasonable request.

References

  1. Wu JS, Yang T, Fu R, Zhou M, Xia LX, Wang ZY, Zhao Y. Constructing electrocatalysts with composition gradient distribution by solubility product theory: amorphous/crystalline CoNiFe-LDH hollow nanocages. Adv Funct Mater. 2023;33(37):2300808. https://doi.org/10.1002/adfm.202300808.

    Article  CAS  Google Scholar 

  2. Zhao X, He DP, Xia BY, Sun YJ, You B. Ambient electrosynthesis toward single-atom sites for electrocatalytic green hydrogen cycling. Adv Mater. 2023;35(14):2210703. https://doi.org/10.1002/adma.202210703.

    Article  CAS  Google Scholar 

  3. Wang JH, Yang SW, Ma FB, Zhao YK, Zhao SN, Xiong ZY, Cai D, Shen HD, Zhu K, Zhang QY, Cao YL, Wang TS, Zhang HP. RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: a high-performance hydrogen evolution reaction catalyst. Tungsten. 2023. https://doi.org/10.1007/s42864-023-00223-3.

    Article  Google Scholar 

  4. Yan WJ, Zhang JT, Lv AJ, Lu SL, Zhong YW, Wang MY. Self-supporting and hierarchically porous NixFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting. Int J Miner Metall Mater. 2022;29(5):1120. https://doi.org/10.1007/s12613-022-2443-2.

    Article  CAS  Google Scholar 

  5. Han F, Xu W, Jia CX, Chen XT, Xie YP, Zhen C, Liu G. Triggering heteroatomic interdiffusion in one-pot-oxidation synthesized NiO/CuFeO2 heterojunction photocathodes for efficient solar hydrogen production from water splitting. Rare Met. 2023;42:853. https://doi.org/10.1007/s12598-022-02177-w.

    Article  CAS  Google Scholar 

  6. Zhang SC, Tan CH, Yan RP, Zou XF, Hu FL, Mi Y, Yan C, Zhao SL. Constructing built-in electric field in heterogeneous nanowire arrays for efficient overall water electrolysis. Angew Chem Int Ed. 2023;135(26): e202302795. https://doi.org/10.1002/anie.202302795.

    Article  CAS  Google Scholar 

  7. Ma MY, Yu HZ, Deng LM, Wang LQ, Liu SY, Pan H, Ren JW, Maximov Y, Hu F, Peng SJ. Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting. Tungsten. 2023;5:589. https://doi.org/10.1007/s42864-023-00212-6.

    Article  Google Scholar 

  8. Zeng XJ, Ye YF, Wang YQ, Yu RH, Moskovits M, Stucky GD. Honeycomb-like MXene/NiFePx-NC with “continuous” single-crystal enabling high activity and robust durability in electrocatalytic oxygen evolution reactions. J Adv Ceram. 2023;12(3):553. https://doi.org/10.26599/JAC.2023.9220704.

    Article  CAS  Google Scholar 

  9. Dong MY, Fu HQ, Xu YM, Zou Y, Chen ZY, Wang L, Hu MQ, Zhang KD, Fu B, Yin HJ, Liu PR, Zhao HJ. NiCo alloy-anchored self-supporting carbon foam as a bifunctional oxygen electrode for rechargeable and flexible Zn-air batteries. Battery Energy. 2023;2(4):20220063. https://doi.org/10.1002/bte2.20220063.

    Article  CAS  Google Scholar 

  10. Zeng XJ, Zhang HQ, Yu RH. Trace tiny NiCo alloy nanoparticles encapsulated on hierarchical porous peanut-like carbon walls for robust oxygen evolution reaction. J Alloy Comp. 2023;960: 170950. https://doi.org/10.1016/j.jallcom.2023.170950.

    Article  CAS  Google Scholar 

  11. Zeng XJ, Choi SM, Bai YC, Jang MJ, Yu RH, Cho HS, Kim CH, Myung NV, Yin YD. Plasmon-enhanced oxygen evolution catalyzed by Fe2N-embedded TiOxNy nanoshells. ACS Appl Energy Mater. 2020;3(1):146. https://doi.org/10.1021/acsaem.9b02022.

    Article  CAS  Google Scholar 

  12. Yoon H, Ju B, Kim DW. Perspectives on the development of highly active, stable, and cost-effective OER electrocatalysts in acid. Battery Energy. 2023;2(5):20230017. https://doi.org/10.1002/bte2.20230017.

    Article  CAS  Google Scholar 

  13. Sun YQ, Li XL, Zhang T, Xu K, Yang YS, Chen GZ, Li CC, Xie Y. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced lkaline hydrogen evolution. Angew Chem. 2021;133(39):21745. https://doi.org/10.1002/anie.202109116.

    Article  CAS  Google Scholar 

  14. Fan WJ, Duan ZY, Liu W, Mehmood R, Qu JT, Cao YC, Guo XY, Zhong J, Zhang FX. Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat Commun. 2023;14(1):1426. https://doi.org/10.1038/s41467-023-37066-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pan Y, Lin R, Chen YJ, Liu SJ, Zhu W, Cao X, Chen WX, Wu KL, Cheong WC, Wang Y, Zheng LR, Luo J, Lin Y, Liu YQ, Liu CG, Li J, Lu Q, Chen X, Wang DS, Peng Q, Chen C, Li YD. Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc. 2018;140(12):4218. https://doi.org/10.1021/jacs.8b00814.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu YQ, Sun WM, Luo J, Chen WX, Cao T, Zheng LR, Dong JC, Zhang J, Zhang ML, Han YH, Chen C, Peng Q, Wang DS, Li YD. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat Commun. 2018;9(1):3861. https://doi.org/10.1038/s41467-018-06296-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen TV, Tekalgne M, Nguyen TP, Le QV, Ahn SH, Kim SY. Electrocatalysts based on MoS2 and WS2 for hydrogen evolution reaction: an overview. Battery Energy. 2023;2(3):20220057. https://doi.org/10.1002/bte2.20220057.

    Article  CAS  Google Scholar 

  18. Wang YX, Cui XZ, Zhang JQ, Qiao JL, Huang HT, Shi JL, Wang GX. Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Prog Mater Sci. 2022;128:100964. https://doi.org/10.1016/j.pmatsci.2022.100964.

    Article  CAS  Google Scholar 

  19. Dong F, Wu MJ, Chen ZS, Liu XH, Zhang GX, Qiao JL, Sun SL. Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: Recent advances and future perspectives. Nano-Micro Lett. 2022;14(1):36. https://doi.org/10.1007/s40820-021-00768-3.

    Article  CAS  Google Scholar 

  20. Wu M, Zhang G, Chen N, Hu Y, Regier T, Rawach D, Sun S. Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 2021;6(4):1153. https://doi.org/10.1021/acsenergylett.1c00037.

    Article  CAS  Google Scholar 

  21. Zhang JJ, Liu W, He F, Song M, Huang X, Shen T, Li JW, Zhang C, Zhang J, Wang DL. Highly dispersed Co atoms anchored in porous nitrogen-doped carbon for acidic H2O2 electrosynthesis. Chem Eng J. 2022;438: 135619. https://doi.org/10.1016/j.cej.2022.135619.

    Article  CAS  Google Scholar 

  22. Yu H, Zeng YX, Li NW, Luan DY, Yu L, Lou XW. Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Sci Adv. 2022;8(10):eabm5766. https://doi.org/10.1126/sciadv.abm5766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu XH, Zhai XW, Sheng WB, Tu J, Zhao ZY, Shi YL, Xu CX, Ge GX, Jia X. Isolated single iron atoms anchored on a N, S-codoped hierarchically ordered porous carbon framework for highly efficient oxygen reduction. J Mater Chem A. 2021;9(16):10110. https://doi.org/10.1039/D1TA00384D.

    Article  CAS  Google Scholar 

  24. Zhong L, Zhou H, Li RF, Cheng H, Wang S, Chen BY, Zhuang YY, Chen JF, Yuan AH. Co/CoOx heterojunctions encapsulated N-doped carbon sheets via a dual-template-guided strategy as efficient electrocatalysts for rechargeable Zn-air battery. J Colloid Interf Sci. 2021;599:46. https://doi.org/10.1016/j.jcis.2021.04.084.

    Article  CAS  Google Scholar 

  25. Liu F, Zhang XQ, Zhang XL, Wang LL, Liu MM, Zhang JJ. Dual-template strategy for electrocatalyst of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for oxygen reduction reaction. J Colloid Interf Sci. 2021;581:523. https://doi.org/10.1016/j.jcis.2020.07.008.

    Article  CAS  Google Scholar 

  26. Li W, Zhao DY. Extension of the stober method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core-shell structures. Adv Mater. 2013;25(1):142. https://doi.org/10.1002/adma.201203547.

    Article  CAS  PubMed  Google Scholar 

  27. Buchel G, Unger KK, Matsumoto A, Tsutsumi K. A novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres. Adv Mater. 1988;10(13):1036. https://doi.org/10.1002/(SICI)1521-4095(199809)10:13%3c1036::AID-ADMA1036%3e3.0.CO;2-Z.

    Article  Google Scholar 

  28. Shu XX, Chen QW, Yang MM, Liu MM, Ma JZ, Zhang JT. Tuning Co-catalytic sites in hierarchical porous N-doped carbon for high-performance rechargeable and flexible Zn-air battery. Adv Energy Mater. 2023;13(1):2202871. https://doi.org/10.1002/aenm.202202871.

    Article  CAS  Google Scholar 

  29. Kisand K, Sarapuu A, Kikas A, Kisand V, Rähn M, Treshchalov A, Käärik M, Piirsoo HM, Aruväli J, Paiste P, Leis J, Sammelselg V, Tamm A, Tammeveski K. Bifunctional multi-metallic nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol. Electrochem Commun. 2021;124: 106932. https://doi.org/10.1016/j.elecom.2021.106932.

    Article  CAS  Google Scholar 

  30. Xu XQ, Xie JH, Liu B, Wang RY, Liu MY, Zhang J, Liu J, Cai Z, Zou JL. PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl Catal B-Environ. 2022;316: 121687.

    Article  CAS  Google Scholar 

  31. Ban JJ, Xu HJ, Cao GQ, Fan YM, Pang WK, Shao GS, Hu JH. Synergistic effects of phase transition and electron-spin regulation on the electrocatalysis performance of ternary nitride. Adv Funct Mater. 2023;33(25):2300623. https://doi.org/10.1002/adfm.202300623.

    Article  CAS  Google Scholar 

  32. Li XG, Zhou JH, Liu C, Xu L, Lu CL, Yang J, Pang H, Hou WH. Encapsulation of janus-structured Ni/Ni2P nanoparticles within hierarchical wrinkled N-doped carbon nanofibers: Interface engineering induces high-efficiency water oxidation. Appl Catal B-Environ. 2021;298: 120578. https://doi.org/10.1016/j.apcatb.2021.120578.

    Article  CAS  Google Scholar 

  33. Liu YF, Ren TL, Su ZJ, Li CJ. Nanoflower-like MoS2 anchored on electrospun carbon nanofibers-interpenetrated reduced graphene oxide as microbial fuel cells anode achieving high power density. J Mater Chem A. 2023;11(19):10371. https://doi.org/10.1039/D3TA01265D.

    Article  CAS  Google Scholar 

  34. Fan XM, Cai T, Wang SY, Yang ZH, Zhang WX. Carbon nanotube-reinforced dual carbon stress-buffering for highly stable silicon anode material in lithium-ion battery. Small. 2023;19(30):2300431. https://doi.org/10.1002/smll.202300431.

    Article  CAS  Google Scholar 

  35. Liu HY, Joo JB, Dahl M, Fu LS, Zeng ZZ, Yin YD. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ Sci. 2015;8(1):286. https://doi.org/10.1039/C4EE02618G.

    Article  CAS  Google Scholar 

  36. Lee DH, Lee BH, Sinha AK, Park JH, Kim MS, Park JJ, Shin HJ, Lee KS, Sung YE, Hyeon T. Engineering titanium dioxide nanostructures for enhanced lithium-ion storage. J Am Chem Soc. 2018;140(48):16676. https://doi.org/10.1021/jacs.8b09487.

    Article  CAS  PubMed  Google Scholar 

  37. Zeng XJ, Zhang QQ, Jin CL, Huang H, Gao YF. Fe-induced electronic transfer and structural evolution of lotus pod-like CoNiFePx@P, N-C heterostructure for sustainable oxygen evolution. Energy Environ Mater. 2023;2023:e12628. https://doi.org/10.1002/eem2.12628.

    Article  CAS  Google Scholar 

  38. Qin MC, Fan SY, Li XY, Yin ZF, Wang L, Chen A. Double active sites in Co-Nx-C@Co electrocatalysts for simultaneous production of hydrogen and carbon monoxide. ACS Appl Mater Interfaces. 2021;13(32):38256. https://doi.org/10.1021/acsami.1c08363.

    Article  CAS  PubMed  Google Scholar 

  39. Zeng XJ, Zhang HQ, Zhang XF, Zhang QQ, Chen YX, Yu RH, Moskovits M. Coupling of ultrasmall and small CoxP nanoparticles confined in porous SiO2 matrix for a robust oxygen evolution reaction. Nano Mater Sci. 2022;4(4):393. https://doi.org/10.1016/j.nanoms.2022.03.002.

    Article  CAS  Google Scholar 

  40. Cao ZQ, Wu MQ, Hu HB, Liang GJ, Zhi CY. Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn-air battery. NPG Asia Mater. 2018;10(7):670. https://doi.org/10.1038/s41427-018-0063-0.

    Article  CAS  Google Scholar 

  41. Zhou PY, Wang LM, Lv JJ, Li RS, Gao FY, Huang XB, Lu YF, Wang G. Tuning the electronic structure of Co@N-C hybrids via metal-doping for efficient electrocatalytic hydrogen evolution reaction. J Mater Chem A. 2022;10(9):4981. https://doi.org/10.1039/D1TA08226D.

    Article  CAS  Google Scholar 

  42. Zeng XJ, Zhao C, Yin YC, Nie TL, Xie NH, Yu R, Stucky GD. Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption. Carbon. 2022;193:26. https://doi.org/10.1016/j.carbon.2022.03.029.

    Article  CAS  Google Scholar 

  43. Zeng XJ, Zhao C, Jiang X, Yu RH, Che RC. Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small. 2023;19(41):2303393. https://doi.org/10.1002/smll.202303393.

    Article  CAS  Google Scholar 

  44. Men YN, Li P, Zhou JH, Cheng GZ, Chen SL, Luo W. Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values. ACS Catal. 2019;9(4):3744. https://doi.org/10.1021/ACSCATAL.9B00407.

    Article  CAS  Google Scholar 

  45. Zeng XJ, Wu ZM, Nie TL, Zhao C, Yu RH, Stucky GD, Gao YF. Metal/N-doped carbon nanoparticles derived from metal-organic frameworks for electromagnetic wave absorption. ACS Appl Nano Mater. 2022;5(8):11474. https://doi.org/10.1021/acsanm.2c02513.

    Article  CAS  Google Scholar 

  46. Zhang XY, Wei L, Guo X. Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: enhanced capacitive storage and cycling performance for supercapacitors. Chem Eng J. 2018;353:615. https://doi.org/10.1016/j.cej.2018.07.160.

    Article  CAS  Google Scholar 

  47. Wang D, Chang YX, Li YR, Zhang SL, Xu SL. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021;40:3156. https://doi.org/10.1007/s12598-021-01733-0.

    Article  CAS  Google Scholar 

  48. Hu YZ, Guo XY, Shen T, Zhu Y, Wang DL. Hollow porous carbon-confined atomically ordered PtCo3 intermetallics for an efficient oxygen reduction reaction. ACS Catal. 2022;12(9):5380. https://doi.org/10.1021/acscatal.2c01541.

    Article  CAS  Google Scholar 

  49. Zeng XJ, Tan YN, Xia L, Zhang QQ, Stucky GD. MXene-derived Ti3C2-Co-TiO2 nanoparticle arrays via cation exchange for highly efficient and stable electrocatalytic oxygen evolution. Chem Commun. 2023;59(7):880. https://doi.org/10.1039/D2CC05911H.

    Article  CAS  Google Scholar 

  50. Zeng XJ, Zhang HQ, Yu RH, Stucky GD, Qiu JS. A phase and interface co-engineered MoPxSy@NiFePxSy@NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction. J Mater Chem A. 2023;11(26):14272. https://doi.org/10.1039/D3TA01993D.

    Article  CAS  Google Scholar 

  51. Zeng XJ, Duan DR, Zhang XY, Li XH, Li K, Yu RH, Moskovits M. Doping and interface engineering in a sandwich Ti3C2Tx/MoS2-xPx heterostructure for efficient hydrogen evolution. J Mater Chem C. 2022;10(11):4140. https://doi.org/10.1039/D1TC05974B.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22269010), Jiangxi Provincial Natural Science Foundation (No. 20224BAB214021), the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province (No. 20212BCJ23020), and the Science and Technology Project of Jiangxi Provincial Department of Education (No. GJJ211305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Zeng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8559 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HQ., Zeng, XJ., Zhang, QQ. et al. Dual template-induced construction of three-dimensional porous SiO2/NC/Co-CNTs heterostructure with highly dispersed active sites for efficient oxygen evolution reaction. Tungsten 6, 585–595 (2024). https://doi.org/10.1007/s42864-023-00253-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00253-x

Keywords

Navigation