Skip to main content
Log in

Interaction of edge dislocations with voids in tungsten

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

This article has been updated

Abstract

Tungsten is widely used as a material capable of withstanding extreme operating conditions and is one of the candidates for use in fusion and Generation IV fission reactors. Atomistic modelling implemented to solve various material science problems is an indispensable approach for improving material properties. This work analyzes the interaction of an edge dislocation with a void in single-crystal tungsten with the help of molecular dynamics simulation. Two different approaches for studying the dynamics of dislocations in tungsten that differ in boundary conditions are compared. Multiple interactions of the dislocation and void at different temperatures are investigated, and based on the obtained stress–strain curves, the dislocation obstacle strength for voids having various diameters is defined. It is shown that when applied to a crystal with small voids, the model with the fixed boundary conditions returns incorrect results. Moreover, the influence of the cell size for the model with periodic boundary conditions is analyzed, and the case of a non-central interaction of a dislocation with a void is considered. The obtained results improve our understanding of the mechanical response of irradiated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data generated during and/or analysed in this article are available from the corresponding author on reasonable request.

Change history

  • 14 December 2023

    Affiliation 5 has been updated to the correct name.

References

  1. Stanculescu A. Worldwide status of advanced reactors (GEN IV) research and technology development. Encyclopedia of nuclear energy. Cambridge: Elsevier; 2021. 478.

    Google Scholar 

  2. Byggmastar J, Granberg F, Sand AE, Pirttikoski A, Alexander R, Marinica MC, Nordlund K. Collision cascades overlapping with self-interstitial defect clusters in Fe and W. J Phys Condens Matter. 2019;31(24):245402. https://doi.org/10.1088/1361-648X/ab0682.

    Article  CAS  PubMed  Google Scholar 

  3. Diaz T, Rubia DL, Caturla MJ, Alonso EA, Soneda N, Johnson MD. The primary damage state and its evolution over multiple length and time scales: recent atomic-scale computer simulation studies. Radiat Eff Defects Solids. 1999;148(1–4):95. https://doi.org/10.1080/10420159908229089.

    Article  Google Scholar 

  4. Bonny G, Terentyev D, Elena J, Zinovev A, Minov B, Zhurkin EE. Assessment of hardening due to dislocation loops in bcc iron: overview and analysis of atomistic simulations for edge dislocations. J Nucl Mater. 2016;473:283. https://doi.org/10.1016/j.jnucmat.2016.02.031.

    Article  CAS  Google Scholar 

  5. Singh BN, Golubov SI, Trinkaus H, Serra A, Osetsky YN, Barashev AV. Aspects of microstructure evolution under cascade damage conditions. J Nucl Mater. 1997;251:107. https://doi.org/10.1016/S0022-3115(97)00244-4.

    Article  CAS  Google Scholar 

  6. Matijasevic M, Lucon E, Almazouzi A. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 C. J Nucl Mater. 2008;377(1):101. https://doi.org/10.1016/j.jnucmat.2008.02.063.

    Article  CAS  Google Scholar 

  7. Zhang Z, Yabuuchi K, Kimura A. Defect distribution in ion-irradiated pure tungsten at different temperatures. J Nucl Mater. 2016;480:207. https://doi.org/10.1016/j.jnucmat.2016.08.029.

    Article  CAS  Google Scholar 

  8. Edalati K, Toh S, Iwaoka H, Horita Z. Microstructural characteristics of tungsten-base nanocomposites produced from micropowders by high-pressure torsion. Acta Mater. 2012;60(9):3885. https://doi.org/10.1016/j.actamat.2012.02.048.

    Article  CAS  Google Scholar 

  9. Korznikova G, Czeppe T, Khalikova G, Gunderov D, Korznikova E, Litynska-Dobrzynska L, Szlezynger M. Microstructure and mechanical properties of Cu-graphene composites produced by two high pressure torsion procedures. Mater Charact. 2020;161:110122. https://doi.org/10.1016/j.matchar.2020.110122.

    Article  CAS  Google Scholar 

  10. Fitzgerald SP. Structure and dynamics of crowdion defects in bcc metals. J Micromech Mol Phys. 2018;03(03n04):1840003. https://doi.org/10.1142/S2424913018400039.

    Article  CAS  Google Scholar 

  11. Shepelev IA, Bachurin DV, Korznikova EA, Dmitriev SV. Highly efficient energy and mass transfer in bcc metals by supersonic 2-crowdions. J Nucl Mater. 2022;568:153841. https://doi.org/10.1016/j.jnucmat.2022.153841.

    Article  CAS  Google Scholar 

  12. Shepelev IA, Dmitriev SV, Kudreyko AA, Velarde MG, Korznikova EA. Supersonic voidions in 2D Morse lattice. Chaos Soliton Fract. 2020;140:110217. https://doi.org/10.1016/j.chaos.2020.110217.

    Article  Google Scholar 

  13. Moradi Marjaneh A, Saadatmand D, Evazzade I, Babicheva RI, Soboleva EG, Srikanth N, Zhou K, Korznikova EA, Dmitriev SV. Mass transfer in the Frenkel–Kontorova chain initiated by molecule impact. Phys Rev E. 2018;98:023003. https://doi.org/10.1103/PhysRevE.98.023003.

    Article  CAS  PubMed  Google Scholar 

  14. Babicheva RI, Evazzade I, Korznikova EA, Shepelev IA, Zhou K, Dmitriev SV. Low-energy channel for mass transfer in Pt crystal initiated by molecule impact. Comput Mater Sci. 2019;163:248. https://doi.org/10.1016/j.commatsci.2019.03.022.

    Article  CAS  Google Scholar 

  15. Dmitriev SV, Korznikova EA, Chetverikov AP. Supersonic N-crowdions in a two-dimensional Morse crystal. J Exp Theor Phys. 2018;126:347. https://doi.org/10.1134/S1063776118030019.

    Article  CAS  Google Scholar 

  16. Singh M, Morkina AY, Korznikova EA, Dubinko VI, Terentiev DA, Xiong D, Naimark OB, Gani VA, Dmitriev SV. Effect of discrete breathers on the specific heat of a nonlinear chain. J Nonlinear Sci. 2021;31:12. https://doi.org/10.1007/s00332-020-09663-4.

    Article  Google Scholar 

  17. Pintsuk G, Hasegawa A. Tungsten as a plasma-facing material. Comprehensive nuclear materials. 2nd ed. Cambridge: Elsevier; 2020. 19.

    Book  Google Scholar 

  18. Acsente T, Carpen L, Matei E, Bogdan B, Negrea R, Bernard E, Grisolia C, Dinescu G. Tungsten nanoparticles produced by magnetron sputtering gas aggregation: process characterization and particle properties. Progress in fine particle plasmas. London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.91733.

    Book  Google Scholar 

  19. You JH, Mazzone G, Visca E, Greuner H, Fursdon M, Addab Y, Backmann C, Barrett T, Coccorese D, Coppola R, Crescenzi F, Di Gironimo G, Di Maio PA, Di Mambro G, Domptail F, Dongiovanni D, Dose G, Flammini D, Forest L, Frosi P, Gallay F, Ghidersa BE, Harrington C, Hunger K, Imbriani V, Li M, Lukenskas A, Maffuci A, Mantel N, Marzullo D, Minniti T, Muller AV, Noce S, Porfiri MT, Quartararo A, Richou M, Roccella S, Terentyev D, Tincani A, Vallone E, Ventre S, Villari R, Villone F, Vorpahl C, Zhang K. Divertor of the European DEMO: engineering and technologies for power exhaust. Fusion Eng Des. 2022;175:113010. https://doi.org/10.1016/j.fusengdes.2022.113010.

    Article  CAS  Google Scholar 

  20. Mason DR, Sand AE, Yi X, Dudarev SL. Direct observation of the spatial distribution of primary cascade damage in tungsten. Acta Mater. 2018;144:905. https://doi.org/10.1016/j.actamat.2017.10.031.

    Article  CAS  Google Scholar 

  21. Mason DR, Granberg F, Boleininger M, Schwarz-Selinger T, Nordlund K, Dudarev SL. Parameter-free quantitative simulation of high-dose microstructure and hydrogen retention in ion-irradiated tungsten. Phys Rev Mater. 2021;5(9):095403. https://doi.org/10.1103/PhysRevMaterials.5.095403.

    Article  CAS  Google Scholar 

  22. Mason DR, Das S, Derlet PM, Dudarev SL, London AJ, Yu H, Phillips NW, Yang D, Mizohata K, Xu R, Hofmann F. Observation of transient and asymptotic driven structural states of tungsten exposed to radiation. Phys Rev Lett. 2020;125(22):225503. https://doi.org/10.1103/PhysRevLett.125.225503.

    Article  CAS  PubMed  Google Scholar 

  23. Derlet PM, Dudarev SL. Microscopic structure of a heavily irradiated material. Phys Rev Mater. 2020;4(2):023605. https://doi.org/10.1103/PhysRevMaterials.4.023605.

    Article  CAS  Google Scholar 

  24. Hollingsworth A, Barthe MF, Lavrentiev MY, Derlet PM, Dudarev SL, Mason DR, Hu Z, Desgardin P, Hess J, Davies S, Thomas B, Salter H, Shelton EFJ, Heinola K, Mizohata K, De Backer A, Baron-Wiechec A, Jepu I, Zayachuk Y, Widdowson A, Meslin E, Morellec A. Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten. J Nucl Mater. 2022;558:153373. https://doi.org/10.1016/j.jnucmat.2021.153373.

    Article  CAS  Google Scholar 

  25. Wang S, Guo W, Schwarz-Selinger T, Yuan Y, Ge L, Cheng L, Zhang X, Cao X, Fu E, Lu GH. Dynamic equilibrium of displacement damage defects in heavy-ion irradiated tungsten. Acta Mater. 2023;244:118578. https://doi.org/10.1016/j.actamat.2022.118578.

    Article  CAS  Google Scholar 

  26. Bonny G, Terentyev D, Bakaev A, Grigorev P, Van Neck D. Many-body central force potentials for tungsten. Modell Simul Mater Sci Eng. 2014;22(5):053001. https://doi.org/10.1088/0965-0393/22/5/053001.

    Article  Google Scholar 

  27. Derlet PM, Nguyen-Manh D, Dudarev SL. Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B. 2007;76:054107. https://doi.org/10.1103/PhysRevB.76.054107.

    Article  CAS  Google Scholar 

  28. Ma PW, Mason DR, Dudarev SL. Multiscale analysis of dislocation loops and voids in tungsten. Phys Rev Mater. 2020;4:103609. https://doi.org/10.1103/PhysRevMaterials.4.103609.

    Article  CAS  Google Scholar 

  29. Han S, Zepeda-Ruiz LA, Ackland GJ, Car R, Srolovitz DJ. Self- interstitials in V and Mo. Phys Rev B. 2002;66:220101. https://doi.org/10.1103/PhysRevB.66.220101.

    Article  CAS  Google Scholar 

  30. Nguyen-Manh D, Horsfield AP, Dudarev SL. Self-interstitial atom defects in bcc transition metals: group-specific trends. Phys Rev B. 2006;73:020101. https://doi.org/10.1103/PhysRevB.73.020101.

    Article  CAS  Google Scholar 

  31. Fikar J, Schäublin R, Mason DR, Nguyen-Manh D. Nano-sized prismatic vacancy dislocation loops and vacancy clusters in tungsten. Nucl Mater Energy. 2018;16:60. https://doi.org/10.1016/j.nme.2018.06.011.

    Article  Google Scholar 

  32. Boleininger M, Swinburne TD, Dupuy L, Dudarev SL. Ultraviolet catastrophe of a fluctuating curved dislocation line. Phys Rev Res. 2020;2(3):032033. https://doi.org/10.1103/PhysRevResearch.2.032033.

    Article  CAS  Google Scholar 

  33. Wang S, He X, Yang P, Dou Y. Dislocation loop formation in refractory metal under nanoindentation studied by molecular dynamics. Atom Energy Sci Technol. 2022;56:145. https://doi.org/10.7538/yzk.2022.youxian.0134.

    Article  Google Scholar 

  34. Cereceda D, Stukowski A, Gilbert MR, Queyreau S, Ventelon L, Marinica MC, Perlado JM, Marian J. Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W. J Phys Condens Matter. 2013;25(8):085702. https://doi.org/10.1088/0953-8984/25/8/085702.

    Article  CAS  PubMed  Google Scholar 

  35. Bertin N, Cai W, Aubry S, Bulatov VV. Core energies of dislocations in bcc metals. Phys Rev Mater. 2021;5(2):025002. https://doi.org/10.1103/PhysRevMaterials.5.025002.

    Article  CAS  Google Scholar 

  36. Weaver JS, Sun C, Wang Y, Kalidindi SR, Doerner RP, Mara NA, Pathak S. Quantifying the mechanical effects of He, W and He+W ion irradiation on tungsten with spherical nanoindentation. J Mater Sci. 2018;53(7):5296. https://doi.org/10.1007/s10853-017-1833-8.

    Article  CAS  Google Scholar 

  37. Fukuda M, Hasegawa A, Nogami S, Yabuuchi K. Microstructure development of dispersion-strengthened tungsten due to neutron irradiation. J Nucl Mater. 2014;449(1–3):213. https://doi.org/10.1016/j.jnucmat.2013.10.012.

    Article  CAS  Google Scholar 

  38. Hwang T, Fukuda M, Nogami S, Hasegawa A, Usami H, Yabuuchi K, Ozawa K, Tanigawa H. Effect of self-ion irradiation on hardening and microstructure of tungsten. Nucl Mater Energy. 2016;9:430. https://doi.org/10.1016/j.nme.2016.06.005.

    Article  Google Scholar 

  39. El-Atwani O, Esquivel E, Efe M, Aydogan E, Wang YQ, Martinez E, Maloy SA. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: microstructure, effect of dpa rate, temperature, and grain size. Acta Mater. 2018;149:206. https://doi.org/10.1016/j.actamat.2018.02.035.

    Article  CAS  Google Scholar 

  40. Fukuda M, Hasegawa A, Tanno T, Nogami S, Kurishit H. Property change of advanced tungsten alloys due to neutron irradiation. J Nucl Mater. 2013;442(1–3 SUPPL. 1):273. https://doi.org/10.1016/j.jnucmat.2013.03.058.

    Article  CAS  Google Scholar 

  41. Hu X, Koyanagi T, Fukuda M, Kumar NAPK, Snead LL, Wirth BD, Katoh Y. Irradiation hardening of pure tungsten exposed to neutron irradiation. J Nucl Mater. 2016;480:235. https://doi.org/10.1016/j.jnucmat.2016.08.024.

    Article  CAS  Google Scholar 

  42. Koyanagi T, Kumar NAPK, Hwang T, Garrison LM, Hu X, Snead LL, Katoh Y. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum. J Nucl Mater. 2017;490:66. https://doi.org/10.1016/j.jnucmat.2017.04.010.

    Article  CAS  Google Scholar 

  43. Anento N, Serra A. Interaction of a mobile 112 grain boundary with radiation induced defects in α-Fe: transformation of defects and impact on the shear-coupled grain boundary migration. Comput Mater Sci. 2020;179:109679. https://doi.org/10.1016/j.commatsci.2020.109679.

    Article  CAS  Google Scholar 

  44. Kvashin N, García-Müller PL, Anento N, Serra A. Atomic processes of shear-coupled migration in 112 twins and vicinal grain boundaries in bcc-Fe. Phys Rev Mater. 2020;4(7):073604. https://doi.org/10.1103/PhysRevMaterials.4.073604.

    Article  CAS  Google Scholar 

  45. Monnet G, Terentyev D. Structure and mobility of the 1/2 ⟨111⟩ 112 edge dislocation in bcc iron studied by molecular dynamics. Acta Mater. 2009;57(5):1416. https://doi.org/10.1016/j.actamat.2008.11.030.

    Article  CAS  Google Scholar 

  46. Rong Z, Osetsky YN, Bacon DJ. A model for the dynamics of loop drag by a gliding dislocation. Philos Mag. 2005;85(14):1473. https://doi.org/10.1080/14786430500036371.

    Article  CAS  Google Scholar 

  47. Marian J, Wirth BD, Schäublin R, Odette GR, Perlado JM. MD modeling of defects in Fe and their interactions. J Nucl Mater. 2003;323(2):181. https://doi.org/10.1016/j.jnucmat.2003.08.037.

    Article  CAS  Google Scholar 

  48. Terentyev D, Bakaev A, Zhurkin EE. Effect of carbon decoration on the absorption of 〈100〉 dislocation loops by dislocations in iron. J Phys Condens Matter. 2014;26(16):165402. https://doi.org/10.1088/0953-8984/26/16/165402.

    Article  CAS  PubMed  Google Scholar 

  49. Terentyev D, Bakaev A. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe–Cr alloys: the role of Cr segregation. J Phys Condens Matter. 2013;25(26):265702. https://doi.org/10.1088/0953-8984/25/26/265702.

    Article  CAS  PubMed  Google Scholar 

  50. Terentyev D, He X, Bonny G, Bakaev A, Zhurkin E, Malerba L. Hardening due to dislocation loop damage in RPV model alloys: role of Mn segregation. J Nucl Mater. 2015;457:173. https://doi.org/10.1016/j.jnucmat.2014.11.023.

    Article  CAS  Google Scholar 

  51. Terentyev D, Bacon DJ, Osetsky YN. Interaction of an edge dislocation with voids in α-iron modelled with different interatomic potentials. J Phys Condens Matter. 2008;20(44):445007. https://doi.org/10.1088/0953-8984/20/44/445007.

    Article  CAS  Google Scholar 

  52. Terentyev D, Grammatikopoulos P, Bacon DJ, Osetsky YN. Simulation of the interaction between an edge dislocation and a ⟨100⟩ interstitial dislocation loop in α-iron. Acta Mater. 2008;56(18):5034. https://doi.org/10.1016/j.actamat.2008.06.032.

    Article  CAS  Google Scholar 

  53. Osetsky YN, Bacon DJ. Atomic-scale mechanisms of void hardening in bcc and fcc metals. Philos Mag. 2010;90(7–8):945. https://doi.org/10.1080/14786430903164580.

    Article  CAS  Google Scholar 

  54. Osetsky YN. Atomic-scale mechanisms of void strengthening in tungsten. Tungsten. 2021;3(1):65. https://doi.org/10.1007/s42864-020-00070-6.

    Article  Google Scholar 

  55. Yu P, Liu G, Wu K, Cui Y, Zhao G, Shen Y. Exploring the effects of the sheared voids on the hardening of tungsten using atomistic simulations. J Nucl Mater. 2022;562:153548. https://doi.org/10.1016/j.jnucmat.2022.153548.

    Article  CAS  Google Scholar 

  56. Shelepev IA, Bayazitov AM, Korznikova EA. Modeling of supersonic crowdion clusters in fcc lattice: effect of the interatomic potential. J Micromech Mol Phys. 2021;06(01):2050019. https://doi.org/10.1142/S2424913020500198.

    Article  CAS  Google Scholar 

  57. Bayazitov AM, Korznikova EA, Bachurin DV, Zinovev AV, Dmitriev SV. Dynamics of supersonic n-crowdions in fcc metals. Rep Mech Eng. 2020;1(1):54. https://doi.org/10.31181/rme200101054b.

    Article  Google Scholar 

  58. Shelepev IA, Kolesnikov ID. Excitation and propagation of 1-crowdion in bcc niobium lattice. Mater Technol Design. 2022;4(1):5. https://doi.org/10.54708/2658757220224175.

    Article  Google Scholar 

  59. Chetverikov AP, Shepelev IA, Korznikova EA, Kistanov AA, Dmitriev SV, Velarde MG. Breathing subsonic crowdion in Morse lattices. Comput Condens Matter. 2017;13:59. https://doi.org/10.1016/j.cocom.2017.09.004.

    Article  Google Scholar 

  60. Korznikova EA, Shunaev VV, Shepelev IA, Glukhova OE, Dmitriev SV. Ab initio study of the propagation of a supersonic 2-crowdion in fcc Al. Comput Mater Sci. 2022;204:111125. https://doi.org/10.1016/j.commatsci.2021.111125.

    Article  CAS  Google Scholar 

  61. Yankovaskaya UI, Korznikova EA, Korpusova SD, Zakharov PV. Mechanical Properties of the Pt-CNT Composite under Uniaxial Deformation: Tension and Compression. Materials. 2023;16(11):4140. https://doi.org/10.3390/ma16114140.

    Article  CAS  Google Scholar 

  62. Chen H, Tsou N. The analysis of thermal-induced phase transformation and microstructural evolution in Ni–Ti based shape memory alloys by molecular dynamics. CMES. 2019;120(2):319. https://doi.org/10.32604/cmes.2019.06447.

    Article  Google Scholar 

  63. Morkina AY, Bachurin DV, Dmitriev SV, Semenov AS, Korznikova EA. Modulational instability of delocalized modes in fcc copper. Materials. 2022;15(16):5597. https://doi.org/10.3390/ma15165597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1. https://doi.org/10.1006/jcph.1995.1039.

    Article  CAS  Google Scholar 

  65. Bonny G, Bakaev A, Terentyev D, Mastrikov YA. Interatomic potential to study plastic deformation in tungsten-rhenium alloys. J Appl Phys. 2017;121(16):165107. https://doi.org/10.1063/1.4982361.

    Article  CAS  Google Scholar 

  66. Marinica MC, Ventelon L, Gilbert MR, Proville L, Dudarev SL, Marian J, Bencteux G, Willaime F. Interatomic potentials for modelling radiation defects and dislocations in tungsten. J Phys Condens Matter. 2013;25(39):395502. https://doi.org/10.1088/0953-8984/25/39/395502.

    Article  CAS  PubMed  Google Scholar 

  67. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng. 2009;18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012.

    Article  Google Scholar 

  68. Osetsky YN, Bacon DJ. An atomic-level model for studying the dynamics of edge dislocations in metals. Model Simul Mater Sci Eng. 2003;11:427. https://doi.org/10.1088/0965-0393/11/4/302.

    Article  CAS  Google Scholar 

  69. Hirth JP, Lothe J. Theory of dislocations. New York: McGraw Hill Book Company; 1972. 495.

    Google Scholar 

  70. Wang Q, Li Z, Pang S, Li X, Dong C, Liaw PK. Coherent precipitation and strengthening in compositionally complex alloys: a review. Entropy. 2018;20:878. https://doi.org/10.3390/e20110878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melander A, Persson P. The strength of a precipitation hardened AlZnMg alloy. Acta Metall. 1978;26:267. https://doi.org/10.1016/0001-6160(78)90127-X.

    Article  CAS  Google Scholar 

  72. Ardell AJ. Precipitation hardening. Metall Mater Trans A. 1985;16:2131. https://doi.org/10.1007/BF02670416.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task of the Ufa University of Science and Technologies (No. 075- 03-2023-119/1) of the youth research laboratory “Metals and Alloys under Extreme Impacts” (for BRI), the Council on Grants of the President of the Russian Federation (Grant no. NSh 4320.2022.1.2) (for KAM), the Russian Science Foundation (Grant no. 23-11-00364) (For EAK and SVD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Korznikova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, A., Babicheva, R.I., Zinovev, A. et al. Interaction of edge dislocations with voids in tungsten. Tungsten 6, 633–646 (2024). https://doi.org/10.1007/s42864-023-00250-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00250-0

Keywords

Navigation