Skip to main content
Log in

Neutron irradiation effects on mechanical properties of ITER specification tungsten

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

In this contribution, we present the results of recent neutron irradiation campaign performed in the material test reactor BR2 (Belgium) on pure tungsten. We have applied various irradiation conditions and sample geometry to assess the effect of neutron irradiation on hardness, bending, tensile and fracture mechanical properties. The investigated material is a commercially pure tungsten plate fabricated according to the international thermonuclear experimental reactor (ITER) specification for the application in the divertor plasma-facing components. The neutron irradiation covers a large span of temperatures and damage doses, ranging from 600 to 1200 °C and 0.1–1 dpa. The obtained mechanical properties were analyzed to deduce the shift of the ductile to brittle transition temperature (DBTT) applying bending, tensile and fracture toughness-testing procedures. Then, a correlation of the fracture toughness with the change of the hardness was established. The obtained results are compared with the already published results on another ITER specification grade produced in the form of a rod. The presented and discussed results show that the performance of the compared grades in terms of the irradiation-induced embrittlement is similar, and that the irradiation in the high-temperature region (600–800 °C) causes a considerable DBTT shift already at 0.2–0.5 dpa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hirai T, Panayotis S, Barabash VR, Amzallag C, Escourbiac F, Durocher A, Merola M, Linke J, Loewenhoff T, Pintsuk G, Wirtz M, Uytdenhouwen I. Use of tungsten material for the ITER divertor. Nucl Mater Energy. 2016;9:616.

    Article  Google Scholar 

  2. Linke J, Du J, Loewenhoff T, Pintsuk G, Spilker B, Steudel I, Wirtz M. Challenges for plasma-facing components in nuclear fusion. Matter Radiat Extrem. 2019;4(5):056201.

    Article  CAS  Google Scholar 

  3. Sheng H, Van Oost G, Zhurkin E, Terentyev D, Dubinko VI, Uytdenhouwen I, Vleugels J. High temperature strain hardening behavior in double forged and potassium doped tungsten. J Nucl Mater. 2014;444(1–3):214.

    Article  CAS  Google Scholar 

  4. Giannattasio A, Yao Z, Tarleton E, Roberts SG. Brittle-ductile transitions in polycrystalline tungsten. Philos Mag. 2010;90(30):3947.

    Article  CAS  Google Scholar 

  5. Rupp D, Weygand SM. Anisotropic fracture behaviour and brittle-to-ductile transition of polycrystalline tungsten. Philos Mag. 2010;90(30):4055.

    Article  CAS  Google Scholar 

  6. Steichen JM. Tensile properties of neutron-irradiated Tzm and tungsten. J Nucl Mater. 1976;60(1):13.

    Article  CAS  Google Scholar 

  7. Alexandrov I, Gorynin IV. Effects of neutron irradiation on properties of refractory metals. Metallovedenie. 1979;22:35.

    Google Scholar 

  8. Gorynin IV, Ignatov VA, Rybin VV, Fabritsiev SA, Kazakov VA, Chakin VP, Tsykanov VA, Barabash VR, Prokofyev YG. Effects of neutron-irradiation on properties of refractory-metals. J Nucl Mater. 1992;191:421.

    Article  Google Scholar 

  9. Yin C, Terentyev D, Zhang T, Petrov RH, Pardoen T. Impact of neutron irradiation on the strength and ductility of pure and ZrC reinforced tungsten grades. J Nucl Mater. 2020;537:152226.

    Article  CAS  Google Scholar 

  10. Wirtz M, Linke J, Loewenhoff T, Pintsuk G, Uytdenhouwen I. Thermal shock tests to qualify different tungsten grades as plasma facing material. Phys Scr. 2016;T167:014015.

    Article  CAS  Google Scholar 

  11. Brezinsek S, Coenen JW, Schwarz-Selinger T, Schmid K, Kirschner A, Hakola A, Tabares FL, van der Meiden HJ, Mayoral ML, Reinhart M, Tsitrone E, Ahlgren T, Aints M, Airila M, Almaviva S, Alves E, Angot T, Anita V, Parra RA, Aumayr F, Balden M, Bauer J, Ben Yaala M, Berger BM, Bisson R, Bjorkas C, Radovic IB, Borodin D, Bucalossi J, Butikova J, Butoi B, Cadez I, Caniello R, Caneve L, Cartry G, Catarino N, Cekada M, Ciraolo G, Ciupinski L, Colao F, Corre Y, Costin C, Craciunescu T, Cremona A, De Angeli M, de Castro A, Dejarnac R, Dellasega D, Dinca P, Dittmar T, Dobrea C, Hansen P, Drenik A, Eich T, Elgeti S, Falie D, Fedorczak N, Ferro Y, Fornal T, Fortuna-Zalesna E, Gao L, Gasior P, Gherendi M, Ghezzi F, Gosar Z, Greuner H, Grigore E, Grisolia C, Groth M, Gruca M, Grzonka J, Gunn JP, Hassouni K, Heinola K, Hoschen T, Huber S, Jacob W, Jepu I, Jiang X, Jogi I, Kaiser A, Karhunen J, Kelemen M, Koppen M, Koslowski HR, Kreter A, Kubkowska M, Laan M, Laguardia L, Lahtinen A, Lasa A, Lazic V, Lemahieu N, Likonen J, Linke J, Litnovsky A, Linsmeier C, Loewenhoff T, Lungu C, Lungu M, Maddaluno G, Maier H, Makkonen T, Manhard A, Marandet Y, Markelj S, Marot L, Martin C, Martin-Rojo AB, Martynova Y, Mateus R, Matveev D, Mayer M, Meisl G, Mellet N, Michau A, Miettunen J, Moller S, Morgan TW, Mougenot J, Mozetic M, Nemanic V, Neu R, Nordlund K, Oberkofler M, Oyarzabal E, Panjan M, Pardanaud C, Paris P, Passoni M, Pegourie B, Pelicon P, Petersson P, Piip K, Pintsuk G, Pompilian GO, Popa G, Porosnicu C, Primc G, Probst M, Raisanen J, Rasinski M, Ratynskaia S, Reiser D, Ricci D, Richou M, Riesch J, Riva G, Rosinski M, Roubin P, Rubel M, Ruset C, Safi E, Sergienko G, Siketic Z, Sima A, Spilker B, Stadlmayr R, Steudel I, Strom P, Tadic T, Tafalla D, Tale I, Terentyev D, Terra A, Tiron V, Tiseanu I, Tolias P, Tskhakaya D, Uccello A, Unterberg B, Uytdenhoven I, Vassallo E, Vavpetic P, Veis P, Velicu IL, Vernimmen JWM, Voitkans A, von Toussaint U, Weckmann A, Wirtz M, Zaloznik A, Zaplotnik R, Contributors WP. Plasma-wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nucl Fusion. 2017;57(11):116041.

    Article  CAS  Google Scholar 

  12. Pintsuk G, Prokhodtseva A, Uytdenhouwen I. Thermal shock characterization of tungsten deformed in two orthogonal directions. J Nucl Mater. 2011;417(1–3):481.

    Article  CAS  Google Scholar 

  13. Alimov VK, Roth J, Mayer M. Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers. J Nucl Mater. 2005;337(1–3):619.

    Article  CAS  Google Scholar 

  14. Mayer M, Ogorodnikova O, Tyburska B, Manhard A, Roth J. Hydrogen retention in tungsten: laboratory experiments and tokamak experience. IAEA-ITER Workshop. 2010.

  15. Buzi L, De Temmerman G, Unterberg B, Reinhart M, Dittmar T, Matveev D, Linsmeier C, Breuer U, Kreter A, Van Oost G. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention. J Nucl Mater. 2015;463:320.

    Article  CAS  Google Scholar 

  16. Dubinko A, Bakaeva A, Hernandez-Mayoral M, Terentyev D, De Temmerman G, Noterdaeme JM. Microstructural modifications in tungsten induced by high flux plasma exposure: TEM examination. Phys Scr. 2016;T167:014030.

    Article  CAS  Google Scholar 

  17. Yin C, Terentyev D, Pardoen T, Bakaeva A, Petrov R, Antusch S, Rieth M, Vilemova M, Matejicek J, Zhang T. Tensile properties of baseline and advanced tungsten grades for fusion applications. Int J Refract Hard Met. 2018;75:153.

    Article  CAS  Google Scholar 

  18. Alfonso A, Jensen DJ, Luo GN, Pantleon W. Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100–1250 degrees C. Fusion Eng Des. 2015;98–99:1924.

    Article  CAS  Google Scholar 

  19. Durif A, Richou M, Kermouche G, Lenci M, Bergheau JM. Impact of tungsten recrystallization on ITER-like components for lifetime estimation. Fusion Eng Des. 2019;138:247.

    Article  CAS  Google Scholar 

  20. Habainy J, Iyengar S, Lee Y, Dai Y. Fatigue behavior of rolled and forged tungsten at 25 degrees, 280 degrees and 480 degrees C. J Nucl Mater. 2015;465:438.

    Article  CAS  Google Scholar 

  21. Liu F, Zhou HS, Xu C, Cao XZ, Ding F, Luo GN. Influence of radiation defects on deuterium permeation behavior in tungsten. J Nucl Mater. 2020;542:152455.

    Article  CAS  Google Scholar 

  22. Shen TL, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures. J Nucl Mater. 2016;468:348.

    Article  CAS  Google Scholar 

  23. Sun ZX, Li Q, Wang WJ, Wang JC, Wang XL, Wei R, Xie CY, Luo GN, Hirai T, Escourbiac F, Panayotis S. Post examination of tungsten monoblocks subjected to high heat flux tests of ITER full-tungsten divertor qualification program. Fusion Eng Des. 2017;121:60.

    Article  CAS  Google Scholar 

  24. Yuan Y, Greuner H, Boswirth B, Linsmeier C, Luo GN, Fu BQ, Xu HY, Shen ZJ, Liu W. Surface modification of molten W exposed to high heat flux helium neutral beams. J Nucl Mater. 2013;437(1–3):297.

    Article  CAS  Google Scholar 

  25. Zhang XX, Yan QZ, Lang ST, Xia M, Ge CC. Texture evolution and basic thermal-mechanical properties of pure tungsten under various rolling reductions. J Nucl Mater. 2016;468:339.

    Article  CAS  Google Scholar 

  26. Garrison LM, Katoh Y, Geringer JW, Akiyoshi M, Chen X, Fukuda M, Hasegawa A, Hinoki T, Hu XX, Koyanagi T, Lang E, McAlister M, McDuffee J, Miyazawa T, Parish C, Proehl E, Reid N, Robertson J, Wang H. PHENIX US-Japan collaboration investigation of thermal and mechanical properties of thermal neutron-shielded irradiated tungsten. Fusion Sci Technol. 2019;75(6):499.

    Article  Google Scholar 

  27. Guan WH, Nogami S, Fukuda M, Hasegawa A. Tensile and fatigue properties of potassium doped and rhenium containing tungsten rods for fusion reactor applications. Fusion Eng Des. 2016;109:1538.

    Article  CAS  Google Scholar 

  28. Fukuda M, Nogami S, Yabuuchi K, Hasegawa A, Muroga T. Anisotropy in the mechanical properties of potassium and rhenium doped tungsten alloy plates for fusion reactor applications. Fusion Sci Technol. 2015;68(3):690.

    Article  Google Scholar 

  29. Miyazawa T, Hwang T, Tsuchida K, Hattori T, Fukuda M, Nogami S, Hasegawa A. Effects of helium on mechanical properties of tungsten for fusion applications. Nucl Mater Energy. 2018;15:154.

    Article  Google Scholar 

  30. Nogami S, Guan WH, Fukuda M, Hasegawa A. Effect of microstructural anisotropy on the mechanical properties of K-doped tungsten rods for plasma facing components. Fusion Eng Des. 2016;109:1549.

    Article  CAS  Google Scholar 

  31. Nogami S, Hasegawa A, Fukuda M, Rieth M, Reiser J, Pintsuk G. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan. J Nucl Mater. 2021;543:152506.

    Article  CAS  Google Scholar 

  32. Rieth M, Doerner R, Hasegawa A, Ueda Y, Wirtz M. Behavior of tungsten under irradiation and plasma interaction. J Nucl Mater. 2019;519:334.

    Article  CAS  Google Scholar 

  33. Yin C, Terentyev D, Pardoen T, Petrov R, Tong Z. Ductile to brittle transition in ITER specification tungsten assessed by combined fracture toughness and bending tests analysis. Mater Sci Eng A. 2019;750:20.

    Article  CAS  Google Scholar 

  34. Yin C, Terentyev D, Pardoen T, Bakaeva A, Petrov R, Antusch S, Rieth M, Vilemova M, Matejicek J, Zhang T. Tensile properties of baseline and advanced tungsten grades for fusion applications. Int J Refract Met Hard Mater. 2018;75:153.

    Article  CAS  Google Scholar 

  35. Butler TW. Report E-69-1 on the determination of dislocation densities. 1969.

  36. Lassila DH, Magness F, Freeman D. Ductile-brittle transition temperature testing of tungsten using the three-point bend test. UCRL-ID-108258. 1991.

  37. ASTM. Standard test method for linear-elastic plane strain fracture toughness KIC of metallic materials. E 399-12, ASTM international, West Conshohocken, PA, 2012.

  38. ASTM. Standard test method for determination of reference temperature, T0, for ferritic steels in the transition range. E1921-16, ASTM international, West Conshohocken, PA, 2016.

  39. Pelowitz D, Durkee J, Elson J, Fensin M, James M, Johns R, McKinney G, Mashnik S, Waters L, Wilcox T. MCNPX 2.7. 0 Extensions. Los Alamos National Laboratory, 2011.

  40. Dudarev SL. DPA definition and estimates. https://www-amdis.iaea.org/CRP/IrradiatedTungsten/RCM2/RCM2Presentation-DudarevDPA-2015-09-10.pdf. Accessed 8 Sept 2015.

  41. Stankovskiy A, Van den Eynde G, Fiorito L. ALEPH V.2.7, A Monte Carlo Burn-Up Code. SCK·CEN, 2018.

  42. Plompen A. JEFF-3.3. 2017. http://www.oecd-nea.org/dbdata/jeff/jeff33/. Accessed 20 Nov 2017.

  43. Brown DA, Chadwick M, Capote R, Kahler A, Trkov A, Herman M, Sonzogni A, Danon Y, Carlson A, Dunn M. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets. 2018;148:1.

    Article  CAS  Google Scholar 

  44. Konobeyev AY, Fischer U, Korovin YA, Simakov S. Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections. Nucl Eng Technol. 2017;3(3):169.

    Article  Google Scholar 

  45. Norgett M, Robinson M, Torrens I. A proposed method of calculating displacement dose rates. Nucl Eng Des. 1975;33(1):50.

    Article  Google Scholar 

  46. Hasegawa A, Fukuda M, Nogami S, Yabuuchi K. Neutron irradiation effects on tungsten materials. Fusion Eng Des. 2014;89(7–8):1568.

    Article  CAS  Google Scholar 

  47. Hasegawa A, Fukuda M, Yabuuchi K, Nogami S. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys. J Nucl Mater. 2016;471:175.

    Article  CAS  Google Scholar 

  48. Hu XX, Koyanagi T, Fukuda M, Kumar NAPK, Snead LL, Wirth BD, Katoh Y. Irradiation hardening of pure tungsten exposed to neutron irradiation. J Nucl Mater. 2016;480:235.

    Article  CAS  Google Scholar 

  49. Terentyev D, Yin C, Dubinko A, Chang CC, You JH. Neutron irradiation hardening across ITER diverter tungsten armor. Int J Refract Hard Met. 2021;95:105437.

    Article  CAS  Google Scholar 

  50. Bonny G, Konstantinovic MJ, Bakaeva A, Yin C, Castin N, Mergia K, Chatzikos V, Dellis S, Khvan T, Bakaev A, Dubinko A, Terentyev D. Trends in vacancy distribution and hardness of high temperature neutron irradiated single crystal tungsten. Acta Mater. 2020;198:1.

    Article  CAS  Google Scholar 

  51. Yin C, Bonny G, Terentyev D. Anisotropy in the hardness of single crystal tungsten before and after neutron irradiation. J Nucl Mater. 2020;546:152759.

    Article  CAS  Google Scholar 

  52. Zinovev A, Delannay L, Terentyev D. Plastic deformation of ITER specification tungsten: Temperature and strain rate dependent constitutive law deduced by inverse finite element analysis. Int J Refract Hard Met. 2021;96:105481.

    Article  CAS  Google Scholar 

  53. Younger CL, Wrights GN. Effect of reactor irradiation on ductile-brittle transition and stress-strain behvaiour of tungsten. NASA Technical Note D-5991. 1970.

  54. Tanure L, Bakaeva A, Dubinko A, Terentyev D, Verbeken K. Effect of annealing on microstructure, texture and hardness of ITER-specification tungsten analyzed by EBSD, vickers micro-hardness and nano-indentation techniques. J Nucl Mater. 2019;524:191.

    Article  CAS  Google Scholar 

  55. Zinovev A, Terentyev D, Dubinko A, Delannay L. Constitutive law for thermally-activated plasticity of recrystallized tungsten. J Nucl Mater. 2017;496:325.

    Article  CAS  Google Scholar 

  56. Gludovatz B, Wurster S, Hoffmann A, Pippan R. Fracture toughness of polycrystalline tungsten alloys. Int J Refract Hard Met. 2010;28(6):674.

    Article  CAS  Google Scholar 

  57. Faleschini M, Kreuzer H, Kiener D, Pippan R. Fracture toughness investigations of tungsten alloys and SPD tungsten alloys. J Nucl Mater. 2007;367:800.

    Article  CAS  Google Scholar 

  58. Gaganidze E, Rupp D, Aktaa J. Fracture behaviour of polycrystalline tungsten. J Nucl Mater. 2014;446(1–3):240.

    Article  CAS  Google Scholar 

  59. Busby JT, Hash MC, Was GS. The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J Nucl Mater. 2005;336(2–3):267.

    Article  CAS  Google Scholar 

  60. Gaganidze E, Chauhan A, Schneider HC, Terentyev D, Borghmans G, Aktaa J. Fracture-mechanical properties of neutron irradiated ITER specification tungsten. J Nucl Mater. 2021;547:152761.

    Article  CAS  Google Scholar 

  61. Castin N, Dubinko A, Bonny G, Bakaev A, Likonen J, De Backer A, Sand AE, Heinola K, Terentyev D. The influence of carbon impurities on the formation of loops in tungsten irradiated with self-ions. J Nucl Mater. 2019;527:151808.

    Article  CAS  Google Scholar 

  62. Castin N, Bonny G, Bakaev A, Ortiz CJ, Sand AE, Terentyev D. Object kinetic Monte Carlo model for neutron and ion irradiation in tungsten: impact of transmutation and carbon impurities. J Nucl Mater. 2018;500:15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization or of the European Commission.

Author information

Authors and Affiliations

Authors

Contributions

Dmitry Terentyev conceived the idea, wrote the manuscript, performed investigation; Chih-Cheng Chang, A. Zinovev, Chao Yin, Xin-Fu He performed investigation and post processing of experimental data. All authors contributed to the scientific discussions and reviewed the manuscipt.

Corresponding author

Correspondence to Dmitry Terentyev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terentyev, D., Chang, CC., Yin, C. et al. Neutron irradiation effects on mechanical properties of ITER specification tungsten. Tungsten 3, 415–433 (2021). https://doi.org/10.1007/s42864-021-00105-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00105-6

Keywords

Navigation