Skip to main content

Advertisement

Log in

The role of tungsten-related elements for improving the electrochemical performances of cathode materials in lithium ion batteries

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Lithium ion batteries using Ni–Co–Mn ternary oxide materials (NCMs) and Ni–Co–Al materials (NCAs) as the cathode materials are dominantly employed to power the electric vehicles (EVs). Increasing the driving range of EVs necessitates an increase of Ni content to improve the energy densities, which, however, degrades the cycle stability. Here we review the doping/coating of tungsten and related elements to improve the electrochemical performance of these cathodes especially the cycle stability. The selection of tungsten and related elements is based on their special properties including the high valence state, strong bonding with oxygen and the large ionic radius. The improvement of cycle stability mainly results from two features: (1) the enhancement of bulk structure stability upon doping (Mo, W, Ta, Nb) and (2) the resistance of side reactions of electrode/electrolyte by the surficial layer induced by direct coating (V, W, Nb) or bulk doping. For the recent high Ni materials, the formation of Ni2+ and its migration to the Li layer induced by these doped/coated tungsten-related elements, and the presence of spinel or rock-salt phase before cycling contributes to improving the cycle stability. The key challenges are the selection of an optimized additive concentration and the fundamental understanding of the reaction mechanism, which will provide insightful guidance for maximizing the electrochemical performance of the state-of-the-art lithium-ion batteries at minimal additional process costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Irle R. Global EV sales for 2018-final results. 2021. http://www.ev-volumes.com/news/global-ev-sales-for-2018/ Accessed 21 Apr 2021.

  2. Li W, Erickson EM, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy. 2020;5:26.

    Article  CAS  Google Scholar 

  3. Li Y, Lei T, Chen Y, Li P, Li W, Zheng J, Zhu J, Deng S, Cao G. Tungsten-consolidated crystal structure of LiNi0.6Co0.2Mn0.2O2 cathode materials for superior electrochemical performance. Appl Surf Sci. 2020;509:145287.

    Article  CAS  Google Scholar 

  4. Kim UH, Jun DW, Park KJ, Zhang Q, Kaghazchi P, Aurbach D, Major DT, Goobes G, Dixit M, Leifer N, Wang CM. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ Sci. 2018;11(5):1271.

    Article  CAS  Google Scholar 

  5. Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett. 2001;30(8):744.

    Article  Google Scholar 

  6. Lu Z, MacNeil DD, Dahn JR. Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem Solid-State Lett. 2001;4(12):A200.

    Article  CAS  Google Scholar 

  7. Park GT, Ryu HH, Park NY, Yoon CS, Sun YK. Tungsten doping for stabilization of Li[Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage. J Power Sources. 2019;442:227242.

    Article  CAS  Google Scholar 

  8. Ryu HH, Park GT, Yoon CS, Sun YK. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J Mater Chem A. 2019;7:18580.

    Article  CAS  Google Scholar 

  9. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11:1.

    Article  Google Scholar 

  10. Liu X, Xu GL, Yin L, Hwang I, Li Y, Lu L, Xu W, Zhang X, Chen Y, Ren Y, Sun CJ. Probing the thermal-driven structural and chemical degradation of Ni-rich layered cathodes by Co/Mn exchange. J Am Chem Soc. 2020;142(46):19745.

    Article  CAS  Google Scholar 

  11. Li W, Lee S, Manthiram A. High-Nickel NMA: A Cobalt-Free Alternative To NMC and NCA cathodes for lithium-ion batteries. Adv Mater. 2020;32(33):2002718.

    Article  CAS  Google Scholar 

  12. Yan W, Yang S, Huang Y, Yang Y, Yuan G. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. J Alloys Compd. 2020;819:153048.

    Article  CAS  Google Scholar 

  13. Tan X, Zhang M, Li J, Zhang D, Yan Y, Li Z. Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2cathode materials: a short review. Ceram Int. 2020;46(14):21888.

    Article  CAS  Google Scholar 

  14. Zuo D, Tian G, Li X, Chen D, Shu K. Recent progress in surface coating of cathode materials for lithium ion secondary batteries. J Alloys Compd. 2017;706:24.

    Article  CAS  Google Scholar 

  15. Chen Z, Qin Y, Amine K, Sun YK. Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem. 2010;20:7606.

    Article  CAS  Google Scholar 

  16. Periodic Table of Elements, National Library of Medicine. 2021. https://pubchem.ncbi.nlm.nih.gov/periodic-table/ Accessed 21 Apr 2021.

  17. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Robelin C. FactSage thermochemical software and databases: recent developments. Calphad. 2009;33(2):295.

    Article  CAS  Google Scholar 

  18. Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J. Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta. 2016;188:48.

    Article  CAS  Google Scholar 

  19. Xue L, Li Y, Xu B, Chen Y, Cao G, Li J, Deng S, Chen Y, Chen J. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage. J Alloys Compd. 2018;748:561.

    Article  CAS  Google Scholar 

  20. Database of Ionic Radii. 2021. http://abulafia.mt.ic.ac.uk/shannon/ptable.php Accessed 21 Apr 2021.

  21. Yang X, Zuo Z, Wang H, Chen Q, Zhang H, Huang Z, Wu B, Zhou H. The contradiction between the half-cell and full-battery evaluations on the tungsten-coating LiNi0.5Co0.2Mn0.3O2 cathode. Electrochim Acta. 2015;180:604.

    Article  CAS  Google Scholar 

  22. Xu C, Marker K, Lee J, Mahadevegowda A, Reeves PJ, Day S, Groh MF, Emge S, Ducati C, Mehdi BL, Tang CC. Bulk fatigue induced by surface reconstruction in layered Ni-rich oxide cathodes for Li-ion batteries. Nat Mater. 2021;20(1):84.

    Article  CAS  Google Scholar 

  23. Yoshinaga N, Kumakura S, Kubota K, Horiba T, Komaba S. Lithium magnesium tungstate solid as an additive into LiNi1/3Co1/3Mn1/3O2 electrodes for li-ion batteries. J Electrochem Soc. 2019;166(3):A5430.

    Article  CAS  Google Scholar 

  24. Luo B, Jiang B, Peng P, Huang J, Chen J, Li M, Chu L, Li Y. Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification. Electrochim Acta. 2019;297:398.

    Article  CAS  Google Scholar 

  25. Shang G, Tang Y, Lai Y, Wu J, Yang X, Li H, Peng C, Zheng J, Zhang Z. Enhancing structural stability unto 4.5 V of Ni-rich cathodes by tungsten-doping for lithium storage. J Power Sources. 2019;423:246.

    Article  CAS  Google Scholar 

  26. Gan Z, Hu G, Peng Z, Cao Y, Tong H, Du K. Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Appl Surf Sci. 2019;481:1228.

    Article  CAS  Google Scholar 

  27. Wang H, Ben L, Yu H, Chen Y, Yang X, Huang X. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. J Mater Chem A. 2017;5(2):822.

    Article  CAS  Google Scholar 

  28. Song G, Zhong H, Dai Y, Zhou X, Yang J. WO3 membrane-encapsulated layered LiNi0.6Co0.2Mn0. 2O2 cathode material for advanced Li-ion batteries. Ceram Int. 2019;45(6):6774.

    Article  CAS  Google Scholar 

  29. Becker D, Börner M, Nölle R, Diehl M, Klein S, Rodehorst U, Schmuch R, Winter M, Placke T. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(20):18404.

    Article  CAS  Google Scholar 

  30. Park SH, Oh SW, Sun YK. Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3−2xMox]O2 cathode materials by ultrasonic spray pyrolysis. J Power Sources. 2005;146(1–2):622.

    Article  CAS  Google Scholar 

  31. Wang LQ, Jiao LF, Yuan H, Guo J, Zhao M, Li HX, Wang YM. Synthesis and electrochemical properties of Mo-doped LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery. J Power Sources. 2006;162(2):1367.

    Article  CAS  Google Scholar 

  32. Li Y, Su Q, Han Q, Li P, Li L, Xu C, Cao X, Cao G. Synthesis and characterization of Mo-doped LiNi0. 5Co0. 2Mn0. 3O2 cathode materials prepared by a hydrothermal process. Ceram Int. 2017;43(4):3483.

    Article  CAS  Google Scholar 

  33. Zhang Y, Wang ZB, Yu FD, Que LF, Wang MJ, Xia YF, Xue Y, Wu J. Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O2 by Mo modification for lithium-ion battery. J Power Sources. 2017;358:1.

    Article  CAS  Google Scholar 

  34. Breuer O, Chakraborty A, Liu J, Kravchuk T, Burstein L, Grinblat J, Kauffman Y, Gladkih A, Nayak P, Tsubery M, Frenkel AI. Understanding the role of minor molybdenum doping in LiNi0.5Co0.2Mn0.3O2 electrodes: from structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl Mater Interfaces. 2018;10(35):29608.

    Article  CAS  Google Scholar 

  35. Liu Q, Zhao Z, Wu F, Mu D, Wang L, Wu B. The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material. Solid State Ion. 2019;337:107.

    Article  CAS  Google Scholar 

  36. Konishi H, Yoshikawa M, Hirano T. The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1−xCo0.1MoxO2 (x= 0, 0.02, 0.04). J Power Sources. 2013;244:23.

    Article  CAS  Google Scholar 

  37. Su Y, Yang Y, Chen L, Lu Y, Bao L, Chen G, Yang Z, Zhang Q, Wang J, Chen R, Chen S. Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase. Electrochim Acta. 2018;292:217.

    Article  CAS  Google Scholar 

  38. Susai FA, Kovacheva D, Chakraborty A, Kravchuk T, Ravikumar R, Talianker M, Grinblat J, Burstein L, Kauffmann Y, Major DT, Markovsky B. Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: theoretical and experimental studies. ACS Appl Energy Mater. 2019;2(6):4521.

    Article  CAS  Google Scholar 

  39. Pişkin B, Savaş Uygur C, Aydınol MK. Mo doping of layered Li(NixMnyCo1−xyzMz)O2 cathode materials for lithium-ion batteries. Int J Energy Res. 2018;42(12):3888.

    Article  CAS  Google Scholar 

  40. Pişkin B, Uygur CS, Aydınol MK. Morphology effect on electrochemical properties of doped (W and Mo) 622NMC, 111NMC, and 226NMC cathode materials. Int J Hydrog Energy. 2020;45(14):7874.

    Article  CAS  Google Scholar 

  41. Song X, Jia M, Chen R. Synthesis of Li3VO4 by the citrate sol–gel method and its ionic conductivity. J Mater Process Technol. 2002;120(1–3):21.

    Article  CAS  Google Scholar 

  42. Onodera T, Kawaji J, Sato A, Okumura T. Electrochemical performance of a newly-designed all-solid-state Li ion battery with a LiNi1/3Co1/3Mn1/3O2–LiVO3 mono-particle layered cathode and a lamellar LiVO3 anode. J Ceram Soc Jpn. 2017;125(6):494.

    Article  CAS  Google Scholar 

  43. Liu H, Zhu Z, Yan Q, Yu S, He X, Chen Y, Zhang R, Ma L, Liu T, Li M, Lin R. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature. 2020;585(7823):63.

    Article  CAS  Google Scholar 

  44. Chen Z, Wang Z, Kim GT, Yang G, Wang H, Wang X, Huang Y, Passerini S, Shen Z. Enhancing the electrochemical performance of LiNi0.4Co0.2Mn0.4O2 by V2O5/LiV3O8 coating. ACS Appl Mater Interfaces. 2019;11(30):26994.

    Article  CAS  Google Scholar 

  45. Park M, Zhang X, Chung M, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources. 2010;195(24):7904.

    Article  CAS  Google Scholar 

  46. Kim D, Lim JM, Lim YG, Yu JS, Park MS, Cho M, Cho K. Design of nickel-rich layered oxides using d electronic donor for redox reactions. Chem Mater. 2015;27(18):6450.

    Article  CAS  Google Scholar 

  47. Liu X, He P, Li H, Ishida M, Zhou H. Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer. J Alloys Compd. 2013;552:76.

    Article  CAS  Google Scholar 

  48. Lu Y, Zeng X, Wang J, Yang L, Hu S, Jia C, Zhao H, Yin D, Ge X, Xi X. Ultrathin LiV2O4 layers modified LiNi0.5Co0.2Mn0.3O2 single-crystal cathodes with enhanced activity and stability. Adv Mater Interfaces. 2019;6(22):1901368.

    Article  CAS  Google Scholar 

  49. Zhu H, Xie T, Chen Z, Li L, Xu M, Wang W, Lai Y, Li J. The impact of vanadium substitution on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2. Electrochim Acta. 2014;135:77.

    Article  CAS  Google Scholar 

  50. Huang Y, Jin FM, Chen FJ, Chen L. Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni0.5Co0.2Mn0.3O2] cathode material under different voltages. J Power Sources. 2014;256:1.

    Article  CAS  Google Scholar 

  51. Ran Q, Zhao H, Hu Y, Shen Q, Liu W, Liu J, Shu X, Zhang M, Liu S, Tan M, Li H. Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage. Electrochim Acta. 2018;289:82.

    Article  CAS  Google Scholar 

  52. Jiang X, Wei Y, Yu X, Dong P, Zhang Y, Zhang Y, Liu J. CeVO4-coated LiNi0.6Co0.2Mn0.2O2 as positive material: towards the excellent electrochemical performance at normal and high temperature. J Mater Sci. 2018;29(18):15869.

    CAS  Google Scholar 

  53. Zhang B, Dong P, Tong H, Yao Y, Zheng J, Yu W, Zhang J, Chu D. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 with lithium-reactive Li3VO4 coating. J Alloys Compd. 2017;706:198.

    Article  CAS  Google Scholar 

  54. Sim SJ, Lee SH, Jin BS, Kim HS. Improving the electrochemical performances using a V-doped Ni-rich NCM cathode. Sci Rep. 2019;9(1):1.

    Article  Google Scholar 

  55. Liang C, Kong F, Longo RC, Zhang C, Nie Y, Zheng Y, Cho K. Site-dependent multicomponent doping strategy for Ni-rich LiNi1−2yCoyMnyO2 (y=1/12) cathode materials for Li-ion batteries. J Mater Chem A. 2017;5(48):25303.

    Article  CAS  Google Scholar 

  56. Iwasaki S, Hamanaka T, Yamakawa T, West WC, Yamamoto K, Motoyama M, Hirayama T, Iriyama Y. Preparation of thick-film LiNi1/3Co1/3Mn1/3O2 electrodes by aerosol deposition and its application to all-solid-state batteries. J Power Sources. 2014;272:1086.

    Article  CAS  Google Scholar 

  57. Lv C, Yang J, Peng Y, Duan X, Ma J, Li Q, Wang T. 1D Nb-doped LiNi1/3Co1/3Mn1/3O2 nanostructures as excellent cathodes for Li-ion battery. Electrochim Acta. 2019;297:258.

    Article  CAS  Google Scholar 

  58. Yang Z, Xiang W, Wu Z, He F, Zhang J, Xiao Y, Zhong B, Guo X. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram Int. 2017;43(4):3866.

    Article  CAS  Google Scholar 

  59. Kaneda H, Koshika Y, Nakamura T, Nagata H, Ushio R, Mori K. Improving the cycling performance and thermal stability of LiNi0.6Co0.2Mn0.2O2 cathode materials by Nb-doping and surface modification. Int J Electrochem Sci. 2017;12(6):4640.

    Article  CAS  Google Scholar 

  60. Karayaylali P, Tatara R, Zhang Y, Chan KL, Yu Y, Giordano L, Maglia F, Jung R, Lund I, Shao-Horn Y. Coating-Dependent Electrode-Electrolyte Interface for Ni-Rich Positive Electrodes in Li-Ion Batteries. J Electrochem Soc. 2019;166(6):A1022.

    Article  CAS  Google Scholar 

  61. Li Z, Luo C, Wang C, Jiang G, Chen J, Zhong S, Zhang Q, Li D. Effects of Nb substitution on structure and electrochemical properties of LiNi0.7Mn0.3O2 cathode materials. J Solid State Electrochem. 2018;22(9):2811.

    Article  CAS  Google Scholar 

  62. Xin F, Zhou H, Chen X, Zuba M, Chernova N, Zhou G, Whittingham MS. Li–Nb–O Coating/Substitution Enhances the Electrochemical Performance of the LiNi0.8Co0.1Mn0.1O2 Cathode. ACS Appl Mater Interfaces. 2019;11(38):34889.

    Article  CAS  Google Scholar 

  63. Lei Y, Ai J, Yang S, Lai C, Xu Q. Nb-doping in LiNi0.8Co0.1Mn0.1O2 cathode material: effect on the cycling stability and voltage decay at high rates. J Taiwan Inst Chem Eng. 2019;97:255.

    Article  CAS  Google Scholar 

  64. Li X, Liu J, Banis MN, Lushington A, Li R, Cai M, Sun X. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ Sci. 2014;7(2):768.

    Article  CAS  Google Scholar 

  65. Chu B, Liu S, You L, Liu D, Huang T, Li Y, Yu A. Enhancing the cycling stability of Ni-Rich LiNi0.6Co0.2Mn0.2O2 cathode at a high cutoff voltage with Ta doping. ACS Sustain Chem Eng. 2020;8(8):3082.

    Article  CAS  Google Scholar 

  66. Weigel T, Schipper F, Erickson EM, Susai FA, Markovsky B, Aurbach D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 2019;4(2):508.

    Article  CAS  Google Scholar 

  67. Sim SJ, Lee SH, Jin BS, Kim HS. Effects of lithium tungsten oxide coating on LiNi0.90Co0.05Mn0.05O2 cathode material for lithium-ion batteries. J Power Sources. 2021;481:229037.

    Article  CAS  Google Scholar 

  68. Kim UH, Park GT, Son BK, Nam GW, Liu J, Kuo LY, Kaghazchi P, Yoon CS, Sun YK. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat Energy. 2020;5:860.

    Article  CAS  Google Scholar 

  69. Qiu Z, Zhang Y, Liu Z, Gao Y, Liu J, Zeng Q. Stabilizing Ni-Rich LiNi0.92Co0.06Al0.02O2 cathodes by boracic polyanion and tungsten cation Co-doping for high-energy lithium-ion batteries. ChemElectroChem. 2020;7(18):3811.

    Article  CAS  Google Scholar 

  70. Jamil S, Yu R, Wang Q, Fasehullah M, Huang Y, Yang Z, Yang X, Wang X. Enhanced cycling stability of nickel-rich layered oxide by tantalum doping. J Power Sources. 2020;473:228597.

    Article  CAS  Google Scholar 

  71. He H, Dong J, Zhang D, Chang C. Effect of Nb doping on the behavior of NCA cathode: enhanced electrochemical performances from improved lattice stability towards 4.5 V application. Ceram Int. 2020;46(15):24564.

    Article  CAS  Google Scholar 

  72. Lee MJ, Noh M, Park MH, Jo M, Kim H, Nam H, Cho J. The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures. J Mater Chem A. 2015;3(25):13453.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian CRC-P project “Value-added cobalt refining technologies powering advanced batteries”, administered by Pure Battery Technologies Pty Ltd, and Australian Research Council through its Laureate Fellowship and Linkage Projects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James Vaughan or Lian-Zhou Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YQ., Fu, W., Hu, YX. et al. The role of tungsten-related elements for improving the electrochemical performances of cathode materials in lithium ion batteries. Tungsten 3, 245–259 (2021). https://doi.org/10.1007/s42864-021-00083-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00083-9

Keywords

Navigation