Skip to main content
Log in

A review of solute-point defect interactions in vanadium and its alloys: first-principles modeling and simulation

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Vanadium alloys are the promising first wall and blanket materials for fusion reactors. Large amounts of helium (He) and hydrogen (H) impurities are produced inside the materials along with irradiation defects under neutron irradiation, leading to bubble formation and microstructure changes, which will degrade the thermal and mechanical properties of vanadium alloys. The microstructure changes of materials are influenced by the interactions of point defects with solute atoms. Nowadays, first-principles calculations are intensively performed to elucidate these interactions, clustering, and dissolution, which can provide valuable information for the design of high-performance anti-irradiation materials. This paper reviews the recent findings of the interactions of point defects (vacancies, self-interstitial atoms) with substitutional solutes and interstitial solutes (C, O, N, H, and He) as well as their clusters in vanadium and its alloys from first-principles calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [60]. Copyright 2013 Elsevier

Fig. 2

Reproduced with permission from Ref. [55]. Copyright 2016 Elsevier

Fig. 3

Reproduced with permission from Ref [67]. Copyright 2016 the Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [103]. Copyright 2019 Elsevier

Fig. 5

Reproduced with permission from Ref. [91]. Copyright 2013 Elsevier

Fig. 6

Reproduced with permission from Ref. [108] for a and Ref. [109] for b. Copyright 2017 Elsevier

Fig. 7

Reproduced with permission from Ref. [108] for a and [109] for b. Copyright 2017 Elsevier

Fig. 8

Reproduced with permission from Ref. [70]. Copyright 2018 Elsevier

Fig. 9

Reproduced with permission from Ref. [110]. Copyright 2019 Elsevier

Fig. 10

Reproduced with permission from Ref. [103]. Copyright 2019 Elsevier

Similar content being viewed by others

Change history

References

  1. Smith DL, Chung HM, Loomis BA, Matsui H, Votinov S, Van Witzenburg W. Development of vanadium-base alloys for fusion first-wall–blanket applications. Fusion Eng Des. 1995;29:399.

    Article  CAS  Google Scholar 

  2. Chung HM, Loomis BA, Smith DL. Development and testing of vanadium alloys for fusion applications. J Nucl Mater. 1996;239:139.

    Article  CAS  Google Scholar 

  3. Kurtz RJ, Abe K, Chernov VM, Kazakov VA, Lucas GE, Matsui H, Muroga T, Odette GR, Smith DL, Zinkle SJ. Critical issues and current status of vanadium alloys for fusion energy applications. J Nucl Mater. 2000;283–287:70.

    Article  Google Scholar 

  4. Smith DL, Billone MC, Natesan K. Vanadium-base alloys for fusion first-wall/blanket applications. Int J Refract Met Hard Mater. 2000;18:213.

    Article  CAS  Google Scholar 

  5. Muroga T, Nagasaka T, Abe K, Chernov VM, Matsui H, Smith DL, Xu ZY, Zinkle SJ. Vanadium alloys—overview and recent results. J Nucl Mater. 2002;Part 1:547:307–11.

    Google Scholar 

  6. Chen JM, Chernov VM, Kurtz RJ, Muroga T. Overview of the vanadium alloy researches for fusion reactors. J Nucl Mater. 2011;417:289.

    Article  CAS  Google Scholar 

  7. Muroga T. 4.12—Vanadium for nuclear systems. In: Konings RJM, editor. Comprehensive nuclear materials. Oxford: Elsevier; 2012. p. 391.

    Chapter  Google Scholar 

  8. Muroga T, Chen JM, Chernov VM, Kurtz RJ, Le Flem M. Present status of vanadium alloys for fusion applications. J Nucl Mater. 2014;455:263.

    Article  CAS  Google Scholar 

  9. Zinkle SJ, Was GS. Materials challenges in nuclear energy. Acta Mater. 2013;61:735.

    Article  CAS  Google Scholar 

  10. Becquart CS, Domain C. Solute–point defect interactions in bcc systems: Focus on first principles modelling in W and RPV steels. Curr Opin Solid State Mater Sci. 2012;16:115.

    Article  CAS  Google Scholar 

  11. Ehrhart P, Schultz H, Ullmaier H. Atomic defects in metals. In: Landolt-Börnstein—group III condensed matter. Berlin: Springer-Verlag; 1991.

  12. Hiroshi N. 6-defects in metals. In: Laughlin DE, Hono K, editors. Physical metallurgy. 5th ed. Oxford: Elsevier; 2014. p. 561.

    Chapter  Google Scholar 

  13. Fedorov AV, van Veen A, Ryazanov AI. Nucleation and growth of helium-vacancy clusters in vanadium and vanadium alloys: V–5Ti, V–3Ti–1Si, V–5Ti–5Cr. J Nucl Mater. 1996;233–237:385.

    Article  Google Scholar 

  14. Hatakeyama M, Tamura S, Muroga T, Yoshida N, Hasegawa M, Matsui H. The diffusion behaviors of interstitial impurities in V–4Cr–4Ti alloys under ion irradiation. J Nucl Mater. 2007;367–370:882.

    Article  CAS  Google Scholar 

  15. Nita N, Miyawaki K, Matsui H. Effects of interstitial impurity on behavior of helium-defect complexes in vanadium studied by THDS. J Nucl Mater. 2007;367–370:505.

    Article  CAS  Google Scholar 

  16. Hatakeyama M, Muroga T, Tamura S, Yamagata I. Nano-structural evolution of Ti(O, N, C) precipitates in V–4Cr–4Ti alloys studied by 3-dimensional atom probe. J Nucl Mater. 2011;417:303.

    Article  CAS  Google Scholar 

  17. Hatakeyama M, Watanabe H, Muroga T, Yoshida N. The precipitation behavior of ion irradiated V–4Cr–4Ti alloys at various oxygen and nitrogen levels. J Nucl Mater. 2004;329–333:420.

    Article  CAS  Google Scholar 

  18. Ohnuki S, Yasuda T, Suda T, Watanabe S, Oliver BM. Effect of alloying elements and neutron-irradiation on hydrogen behavior in V alloys. J Nucl Mater. 2004;329:481.

    Article  CAS  Google Scholar 

  19. Chen JM, Xu Y, Deng Y, Yang L, Qiu SY. The synergetic effects of hydrogen and oxygen on the strength and ductility of vanadium alloys. Plasma Sci Technol. 2003;5:2051.

    Article  CAS  Google Scholar 

  20. Chung HM, Loomis BA, Smith DL. Effect of irradiation damage and helium on swelling and structure of vanadium-base alloys. J Nucl Mater. 1994;212–215:804.

    Article  Google Scholar 

  21. Leguey T, Pareja R. Recovery characteristics of neutron-irradiated V-Ti alloys. J Nucl Mater. 2000;279:216.

    Article  CAS  Google Scholar 

  22. Kurishita H, Oda S, Kobayashi S, Nakai K, Kuwabara T, Hasegawa M, Matsui H. Effect of 2wt% Ti addition on high-temperature strength of fine-grained, particle dispersed V-Y alloys. J Nucl Mater. 2007;367–370:848.

    Article  CAS  Google Scholar 

  23. Sakamoto T, Kurishita H, Kobayashi S, Nakai K. High temperature deformation of V–1.6Y–8.5W–(0.08, 0.15)C alloys. J Nucl Mater. 2009;386–388:602.

    Article  CAS  Google Scholar 

  24. Furuno T, Kurishita H, Nagasaka T, Nishimura A, Muroga T, Sakamoto T, Kobayashi S, Nakai K, Matsuo S, Arakawa H. Effects of grain size on high temperature creep of fine grained, solution and dispersion hardened V–1.6Y–8W–0.8TiC. J Nucl Mater. 2011;417:299.

    Article  CAS  Google Scholar 

  25. Sakamoto T, Kurishita H, Furuno T, Nagasaka T, Kobayashi S, Nakai K, Matsuo S, Arakawa H, Nishimura A, Muroga T. Uniaxial creep behavior of nanostructured, solution and dispersion hardened V–1.4Y–7W–9Mo–0.7TiC with different grain sizes. Mater Sci Eng A. 2011;528:7843.

    Article  CAS  Google Scholar 

  26. Zheng PF, Chen JM, Nagasaka T, Muroga T, Zhao JJ, Xu ZY, Li CH, Fu HY, Chen H, Duan XR. Effects of dispersion particle agents on the hardening of V–4Cr–4Ti alloys. J Nucl Mater. 2014;455:669.

    Article  CAS  Google Scholar 

  27. Zheng PF, Nagasaka T, Muroga T, Chen JM. Microstructures and mechanical properties of mechanically alloyed V–4Cr–4Ti alloy dispersion strengthened by nano-particles. Fusion Eng Des. 2014;89:1648.

    Article  CAS  Google Scholar 

  28. Satou M, Chuto T, Abe K. Improvement in post-irradiation ductility of neutron irradiated V–Ti–Cr–Si–Al–Y alloy and the role of interstitial impurities. J Nucl Mater. 2000;283–287:367.

    Article  Google Scholar 

  29. Chen JM, Qiu SY, Yang L, Xu ZY, Deng Y, Xu Y. Effects of oxygen, hydrogen and neutron irradiation on the mechanical properties of several vanadium alloys. J Nucl Mater. 2002;302:135.

    Article  CAS  Google Scholar 

  30. Zhang J, Han WZ. Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium. Acta Mater. 2020;196:122.

    Article  CAS  Google Scholar 

  31. Nita N, Anma Y, Matsui H, Ohkubo T, Hono K. Irradiation induced precipitates in vanadium alloys studied by atom probe microanalysis. J Nucl Mater. 2007;367–370:858.

    Article  CAS  Google Scholar 

  32. Smith DL, Loomis BA, Diercks DR. Vanadium-base alloys for fusion reactor applications — a review. J Nucl Mater. 1985;135:125.

    Article  CAS  Google Scholar 

  33. Loomis BA, Smith DL. Vanadium alloys for structural applications in fusion systems: a review of vanadium alloy mechanical and physical properties. J Nucl Mater. 1992;191–194:84.

    Google Scholar 

  34. Impagnatiello A, Hernandez-Maldonado D, Bertali G, Prestat E, Kepaptsoglou D, Ramasse Q, Haigh SJ, Jimenez-Melero E. Atomically resolved chemical ordering at the nm-thick TiO precipitate/matrix interface in V–4Ti–4Cr alloy. Scripta Mater. 2017;126:50.

    Article  CAS  Google Scholar 

  35. Impagnatiello A, Shubeita SM, Wady PT, Ipatova I, Dawson H, Barcellini C, Jimenez-Melero E. Monolayer-thick TiO precipitation in V–4Cr–4Ti alloy induced by proton irradiation. Scripta Mater. 2017;130:174.

    Article  CAS  Google Scholar 

  36. Impagnatiello A, Toyama T, Jimenez-Melero E. Ti-rich precipitate evolution in vanadium-based alloys during annealing above 400 °C. J Nucl Mater. 2017;485:122.

    Article  CAS  Google Scholar 

  37. Myers SM, Baskes MI, Birnbaum HK, Corbett JW, DeLeo GG, Estreicher SK, Haller EE, Jena P, Johnson NM, Kirchheim R, Pearton SJ, Stavola MJ. Hydrogen interactions with defects in crystalline solids. Rev Mod Phys. 1992;64:559.

    Article  CAS  Google Scholar 

  38. Aoyagi K, Torres EP, Suda T, Ohnuki S. Effect of hydrogen accumulation on mechanical property and microstructure of V-Cr-Ti alloys. J Nucl Mater. 2000;Part 2:876:283–7.

    Google Scholar 

  39. Torres P, Aoyagi K, Suda T, Watanabe S, Ohnuki S. Hydride formation and fracture of vanadium alloys. J Nucl Mater. 2002;307–311:625.

    Article  Google Scholar 

  40. DiStefano JR, Pint BA, DeVan JH, Röhrig HD, Chitwood LD. Effects of oxygen and hydrogen at low pressure on the mechanical properties of V-Cr–Ti alloys. J Nucl Mater. 2000;Part 2:841:283–7.

    Google Scholar 

  41. Masuda J, Hashizume K, Otsuka T, Tanabe T, Hatano Y, Nakamura Y, Nagasaka T, Muroga T. Diffusion and trapping of tritium in vanadium alloys. J Nucl Mater. 2007;363–365:1256.

    Article  CAS  Google Scholar 

  42. Tanaka M, Matsui H. Effects of implanted helium on the mechanical-properties of vanadium-based binary-alloys. Mater Trans JIM. 1993;34:1083.

    Article  CAS  Google Scholar 

  43. Sekimura N, Iwai T, Arai Y, Yonamine S, Naito A, Miwa Y, Hamada S. Synergistic effects of hydrogen and helium on microstructural evolution in vanadium alloys by triple ion beam irradiation. J Nucl Mater. 2000;Part 1:224:283–7.

    Google Scholar 

  44. Mukouda I, Shimomura Y, Yamaki D, Nakazawa T, Aruga T, Jitsukawa S. Microstructure in vanadium irradiated by simultaneous multi-ion beam of hydrogen, helium and nickel ions. J Nucl Mater. 2002;Part 1:412:307–11.

    Google Scholar 

  45. Hirohata Y, Yamada T, Yamauchi Y, Hino T, Nagasaka T, Muroga T. Deuterium and helium retentions of V–4Cr–4Ti alloy used as first wall of breeding blanket in a fusion reactor. J Nucl Mater. 2006;348:33.

    Article  CAS  Google Scholar 

  46. Ullmaier H. The influence of helium on the bulk properties of fusion reactor structural materials. Nucl Fusion. 1984;24:1039.

    Article  CAS  Google Scholar 

  47. Hirohata Y, Yamada T, Yamauchi Y, Hino T, Nagasaka T, Muroga T. Helium thermal desorption and retention properties of V–4Cr–4Ti alloy used for first wall of breeding blanket. Fusion Eng Des. 2006;81:193.

    Article  CAS  Google Scholar 

  48. Hatano Y, Nanjo Y, Hayakawa R, Watanabe K. Permeation of hydrogen through vanadium under helium ion irradiation. J Nucl Mater. 2000;283–287:868.

    Article  Google Scholar 

  49. Jiang SN, Yu CW, Zheng PF, Guo LP, Zhou X, Rao WF. Bubbles and precipitates formation and effects on the hardening of irradiated vanadium alloys. J Nucl Mater. 2021;544:152712.

    Article  CAS  Google Scholar 

  50. Nguyen-Manh D, Horsfield AP, Dudarev SL. Self-interstitial atom defects in bcc transition metals: Group-specific trends. Phys Rev B. 2006;73:020101.

    Article  CAS  Google Scholar 

  51. Derlet PM, Nguyen-Manh D, Dudarev SL. Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B. 2007;76:054107.

    Article  CAS  Google Scholar 

  52. Seletskaia T, Osetsky Y, Stoller RE, Stocks GM. First-principles theory of the energetics of He defects in bcc transition metals. Phys Rev B. 2008;78:134103.

    Article  CAS  Google Scholar 

  53. Boev AO, Aksyonov DA, Kartamyshev AI, Maksimenko VN, Nelasov IV, Lipnitskii AG. Interaction of Ti and Cr atoms with point defects in bcc vanadium: A DFT study. J Nucl Mater. 2017;492:14.

    Article  CAS  Google Scholar 

  54. Zhang PB, Li YG, Zhao JJ. Materials selection for nuclear applications in view of divacancy energies by comprehensive first-principles calculations. J Nucl Mater. 2020;538:152253.

    Article  CAS  Google Scholar 

  55. Deng L, Zhang XM, Tang JF, Deng HQ, Xiao SF, Hu WY. First-principles study of the binding preferences and diffusion behaviors of solutes in vanadium alloys. J Alloys Compd. 2016;660:55.

    Article  CAS  Google Scholar 

  56. Zhang PB, Zhao JJ, Qin Y, Wen B. Stability and dissolution of helium-vacancy complexes in vanadium solid. J Nucl Mater. 2011;419:1.

    Article  CAS  Google Scholar 

  57. Zhang PB, Zhao JJ. Energetics and configurations of He–He pair in vacancy of transition metals. Nucl Instrum Methods Phys Res Sect B. 2014;322:34.

    Article  CAS  Google Scholar 

  58. Han S, Zepeda-Ruiz LA, Ackland GJ, Car R, Srolovitz DJ. Self-interstitials in V and Mo. Phys Rev B. 2002;66:220101.

    Article  CAS  Google Scholar 

  59. Janot C, George B, Delcroix P. Point defects in vanadium investigated by Mossbauer spectroscopy and positron annihilation. J Phys F: Met Phys. 1982;12:47.

    Article  CAS  Google Scholar 

  60. Zhang C, Zhang PB, Li RH, Zhao JJ, Dong C. Stability and migration of vacancy in V–4Cr–4Ti alloy: Effects of Al, Si, Y trace elements. J Nucl Mater. 2013;442:370.

    Article  CAS  Google Scholar 

  61. Shang SL, Zhou BC, Wang WY, Ross AJ, Liu XL, Hu YJ, Fang H-Z, Wang Y, Liu ZK. A comprehensive first-principles study of pure elements: vacancy formation and migration energies and self-diffusion coefficients. Acta Mater. 2016;109:128.

    Article  CAS  Google Scholar 

  62. Fu CC, Willaime F. Ab initio study of helium in alpha-Fe: Dissolution, migration, and clustering with vacancies. Phys Rev B. 2005;72:064117.

    Article  CAS  Google Scholar 

  63. Morishita K, Sugano R, Wirth BD, de la Rubia TD. Thermal stability of helium–vacancy clusters in iron. Nucl Instrum Methods Phys Res Sect B. 2003;202:76.

    Article  CAS  Google Scholar 

  64. Fu CC, Willaime F, Ordejón P. Stability and mobility of mono- and di-interstitials in α-Fe. Phys Rev Lett. 2004;92:175503.

    Article  CAS  Google Scholar 

  65. Zou TT, Zhang PB, Zhao JJ, Zheng PF, Chen JM. First principles study of vacancy-solute complexes in vanadium. J Alloys Compd. 2018;763:861.

    Article  CAS  Google Scholar 

  66. Li RH, Zhang PB, Li XQ, Zhang C, Zhao JJ. First-principles study of the behavior of O, N and C impurities in vanadium solids. J Nucl Mater. 2013;435:71.

    Article  CAS  Google Scholar 

  67. Deng L, Tang LZ, Zhang XM, Tang JF, Li RL, Deng HQ. Ab initio solute–interstitial impurity interactions in vanadium alloys: the roles of vacancy. RSC Adv. 2016;6:78621.

    Article  CAS  Google Scholar 

  68. Gui LJ, Liu YL. First-principles studying the properties of oxygen in vanadium: Thermodynamics and tensile/shear behavior. Comput Condens Matter. 2016;7:7.

    Article  Google Scholar 

  69. Zhang XM, Li YF, He QL, Li RL, Deng L, Wang L, Liu XL, Tang JF, Deng HQ, Hu WY. Investigation of the interstitial oxygen behaviors in vanadium alloy: a first-principles study. Curr Appl Phys. 2018;18:183.

    Article  Google Scholar 

  70. Zhang PB, Zou TT, Liu WB, Yin Y, Zhao JJ. Stability of X-C-vacancy complexes (X=H, He) in vanadium from first principles investigations. J Nucl Mater. 2018;505:119.

    Article  CAS  Google Scholar 

  71. Gong L, Su QL, Deng HQ, Xiao SF, Hu WY. The stability and diffusion properties of foreign impurity atoms on the surface and in the bulk of vanadium: A first-principles study. Comput Mater Sci. 2014;81:191.

    Article  CAS  Google Scholar 

  72. Shewmon P. Diffusion in solids. Hoboken: Wiley; 1989.

    Google Scholar 

  73. Alkhamees A, Zhou H-B, Liu YL, Jin S, Zhang Y, Lu GH. Vacancy trapping behaviors of oxygen in tungsten: a first-principles study. J Nucl Mater. 2013;437:6.

    Article  CAS  Google Scholar 

  74. Kong XS, You YW, Song C, Fang QF, Chen JL, Luo GN, Liu CS. First principles study of foreign interstitial atom (carbon, nitrogen) interactions with intrinsic defects in tungsten. J Nucl Mater. 2012;430:270.

    Article  CAS  Google Scholar 

  75. Domain C, Becquart CS, Foct J. Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in a-Fe. Phys Rev B. 2004;69:144112.

    Article  CAS  Google Scholar 

  76. Schuler T, Barouh C, Nastar M, Fu C-C. Equilibrium vacancy concentration driven by undetectable impurities. Phys Rev Lett. 2015;115:015501.

    Article  CAS  Google Scholar 

  77. Zhang PB, Zhao JJ, Wen B. Trapping of multiple hydrogen atoms in a vanadium monovacancy: a first-principles study. J Nucl Mater. 2012;429:216.

    Article  CAS  Google Scholar 

  78. Luo J, Zhou HB, Liu YL, Gui LJ, Jin S, Zhang Y, Lu GH. Dissolution, diffusion and permeation behavior of hydrogen in vanadium: a first-principles investigation. J Phys Condens Matter. 2011;23:135501.

    Article  CAS  Google Scholar 

  79. Gui LJ, Liu YL, Wang WT, Jin S, Zhang Y, Lu GH, Yao JE. First-principles investigation on vacancy trapping behaviors of hydrogen in vanadium. J Nucl Mater. 2013;442:S688.

    Article  CAS  Google Scholar 

  80. Ouyang C, Lee YS. Hydrogen-induced interactions in vanadium from first-principles calculations. Phys Rev B. 2011;83:045111.

    Article  CAS  Google Scholar 

  81. Kofstad P, Wallace WE. Vapor pressure studies of the vanadium-hydrogen system and thermodynamics of formation of vanadium-hydrogen solid solutions1. J Am Chem Soc. 1959;81:5019.

    Article  CAS  Google Scholar 

  82. Veleckis E, Edwards RK. Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen. J Phys Chem. 1969;73:683.

    Article  CAS  Google Scholar 

  83. Takata K, Suzuki T. Permeation of hydrogen in vanadium: I. Experimental details. Mater Sci Eng A. 1993;163:91.

    Article  Google Scholar 

  84. Fujii K, Hashizume K, Hatano Y, Sugisaki M. Tracer diffusion coefficient of tritium in vanadium and trapping effect due to zirconium impurity. J Alloys Compd. 1998;270:42.

    Article  CAS  Google Scholar 

  85. Zhang PB, Zhao JJ, Qin Y, Wen B. First-principles study of hydrogen behavior in V-Cr-Ti alloys. Nucl Instrum Methods Phys Res Sect B. 2011;269:1735.

    Article  CAS  Google Scholar 

  86. Chen JM, Xu ZY, Yang L. The influence of hydrogen on tensile properties of V-base alloys developed in China. J Nucl Mater. 2002;Part 1:566:307.

    Google Scholar 

  87. Muroga T, Nagasaka T, Chen JM, Xu ZY, Huang QY, Wu YC. Characterization for fusion candidate vanadium alloys. Plasma Sci Technol. 2004;6:2395.

    Article  CAS  Google Scholar 

  88. Zhang PB, Zhao JJ, Qin Y, Wen B. Stability and migration property of helium and self defects in vanadium and V–4Cr–4Ti alloy by first-principles. J Nucl Mater. 2011;413:90.

    Article  CAS  Google Scholar 

  89. Zhang PB, Zou TT, Zhao JJ. He–He and He–metal interactions in transition metals from first-principles. J Nucl Mater. 2015;467:465.

    Article  CAS  Google Scholar 

  90. Ohsawa K, Eguchi K, Watanabe H, Yamaguchi M, Yagi M. Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals. Phys Rev B. 2012;85:094102.

    Article  CAS  Google Scholar 

  91. Li RH, Zhang PB, Zhang C, Huang XM, Zhao JJ. Vacancy trapping mechanism for multiple helium in monovacancy and small void of vanadium solid. J Nucl Mater. 2013;440:557.

    Article  CAS  Google Scholar 

  92. Zhang PB, Li RH, Zhao JJ, Wen B. Synergetic effect of H and He with vacancy in vanadium solid from first-principles simulations. Nucl Instrum Methods Phys Res Sect B. 2013;303:75.

    Article  CAS  Google Scholar 

  93. Zhang PB, Zhang C, Li RH, Zhao JJ. He-induced vacancy formation in bcc Fe solid from first-principles simulation. J Nucl Mater. 2014;444:147.

    Article  CAS  Google Scholar 

  94. Morishita K, Sugano R, Wirth BD. MD and KMC modeling of the growth and shrinkage mechanisms of helium–vacancy clusters in Fe. J Nucl Mater. 2003;323:243.

    Article  CAS  Google Scholar 

  95. Becquart CS, Domain C. Migration energy of He in W revisited by Ab initio calculations. Phys Rev Lett. 2006;97:196402.

    Article  CAS  Google Scholar 

  96. Tateyama Y, Ohno T. Stability and clusterization of hydrogen-vacancy complexes in α−Fe: An ab initio study. Phys Rev B. 2003;67:174105.

    Article  CAS  Google Scholar 

  97. Counts WA, Wolverton C, Gibala R. First-principles energetics of hydrogen traps in α-Fe: point defects. Acta Mater. 2010;58:4730.

    Article  CAS  Google Scholar 

  98. Becquart CS, Domain C. An object Kinetic Monte Carlo Simulation of the dynamics of helium and point defects in tungsten. J Nucl Mater. 2009;385:223.

    Article  CAS  Google Scholar 

  99. Liu YL, Zhang Y, Zhou HB, Lu GH, Liu F, Luo GN. Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys Rev B. 2009;79:172103.

    Article  CAS  Google Scholar 

  100. Ohsawa K, Goto J, Yamakami M, Yamaguchi M, Yagi M. Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles. Phys Rev B. 2010;82:184117.

    Article  CAS  Google Scholar 

  101. Lu G, Kaxiras E. Hydrogen embrittlement of aluminum: the crucial role of vacancies. Phys Rev Lett. 2005;94:155501.

    Article  CAS  Google Scholar 

  102. Ismer L, Park MS, Janotti A, Van de Walle CG. Interactions between hydrogen impurities and vacancies in Mg and Al: a comparative analysis based on density functional theory. Phys Rev B. 2009;80:184110.

    Article  CAS  Google Scholar 

  103. Zhang PB, Zou TT, Feng SB, Zhao JJ. First principles investigations of hydrogen interaction with vacancy-oxygen complexes in vanadium alloys. Int J Hydrogen Energy. 2019;44:26637.

    Article  CAS  Google Scholar 

  104. Xing WW, Chen XQ, Li XB, Ma YC, Chen B, Liu K. First-principles study of hydrogen trapping behavior in face centered cubic metals (M=Ni, Cu and Al) with monovacancy. Int J Hydrogen Energy. 2020;45:25555.

    Article  CAS  Google Scholar 

  105. Fukai Y, Hidehiko S. Formation mechanism of defect metal hydrides containing superabundant vacancies. J Phys Condens Matter. 2007;19:436201.

    Article  CAS  Google Scholar 

  106. Tateyama Y, Ohno T. Stability and clusterization of hydrogen-vacancy complexes in alpha-Fe: an ab initio study. Phys Rev B. 2003;67:174105.

    Article  CAS  Google Scholar 

  107. Vassen R, Trinkaus H, Jung P. Helium desorption from Fe and V by atomic diffusion and bubble migration. Phys Rev B. 1991;44:4206.

    Article  CAS  Google Scholar 

  108. Zhang PB, Zou TT, Zhao JJ, Zheng PF, Chen JM. Diffusion and retention of hydrogen in vanadium in presence of Ti and Cr: first-principles investigations. J Nucl Mater. 2017;484:276.

    Article  CAS  Google Scholar 

  109. Zou TT, Zhang PB, Zhao JJ, Zheng PP, Chen JM. Effect of Ti/Cr additive on helium diffusion and segregation in dilute vanadium alloys. Nucl Instrum Methods Phys Res Sect B. 2017;393:130.

    Article  CAS  Google Scholar 

  110. Zhang PB, Ding JH, Sun D, Yang YC, Huang SS, Zhao JJ. First-principles calculations of vacancy-O-He and vacancy-N-He complexes in vanadium. Comput Mater Sci. 2019;160:180.

    Article  CAS  Google Scholar 

  111. Monasterio PR, Lau TT, Yip S, Van Vliet KJ. Hydrogen-vacancy interactions in Fe-C Alloys. Phys Rev Lett. 2009;103:085501.

    Article  CAS  Google Scholar 

  112. Ortiz CJ, Caturla MJ, Fu CC, Willaime F. Influence of carbon on the kinetics of He migration and clustering in α−Fe from first principles. Phys Rev B. 2009;80:134109.

    Article  CAS  Google Scholar 

  113. Becquart CS, Barthe MF, De Backer A. Modelling radiation damage and He production in tungsten. Phys Scr. 2011;T145:014048.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National MCF Energy R&D Program of China (Grant Nos. 2018YFE0308100, and 2018YFE0308105), the National Key Research and Development Program of China (Grant No. 2017YFE0301306), the Liaoning Province Natural Science Fund Project of China (Grant No. 20180510053), the Fundamental Research Funds for the Central Universities of China (Grant No. 3132020178) and the National Natural Science Foundation of China (Grant Nos. 11847164 and 11905019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-Bo Zhang or Ji-Jun Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, PB., Zhao, JJ., Zou, TT. et al. A review of solute-point defect interactions in vanadium and its alloys: first-principles modeling and simulation. Tungsten 3, 38–57 (2021). https://doi.org/10.1007/s42864-021-00078-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00078-6

Keywords

Navigation