Skip to main content

Advertisement

Log in

Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Recently, two-dimensional transition metal dichalcogenides, particularly WS2, raised extensive interest due to its extraordinary physicochemical properties. With the merits of low costs and prominent properties such as high anisotropy and distinct crystal structure, WS2 is regarded as a competent substitute in the construction of next-generation environmentally benign energy storage and conversion devices. In this review, we begin with the fundamental studies of the structure, properties and preparation of WS2, followed by detailed discussions on the development of various WS2 and WS2-based composites for electrochemical energy storage and conversion applications. In the end, some prospective prospects and promising developments of WS2 in these fields are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [14]. Copyright 2015, American Chemical Society (ACS)

Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [46]. Copyright 2019, ACS

Fig. 5

Reproduced with permission from Ref. [71]. Copyright 2019, ACS

Fig. 6

Reproduced with permission from Ref. [80]. Copyright 2014, Wiley

Fig. 7
Fig. 8

Reproduced with permission from Ref. [128]. Copyright 2016, ACS

Fig. 9

Reproduced with permission from Ref. [89]. Copyright 2013, Royal Society of Chemistry (RSC)

Fig. 10

Reproduced with permission from Ref. [165]. Copyright 2019, RSC

Fig. 11
Fig. 12

Reproduced with permission from Ref. [171]. Copyright 2019, Elsevier

Fig. 13

Similar content being viewed by others

Change history

References

  1. Chen KF, Song SY, Liu F, Xue DF. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev. 2015;44(17):6230.

    Article  CAS  Google Scholar 

  2. Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci. 2018;11(10):2696.

    Article  Google Scholar 

  3. Lei W, Jin D, Liu HP, Tong ZM, Zhang HJ. An overview of bacterial cellulose in flexible electrochemical energy storage. Chemsuschem. 2020;13(15):3731.

    Article  CAS  Google Scholar 

  4. Sun HT, Zhu J, Baumann D, Peng LL, Xu YX, Shakir I, Huang Y, Duan XF. Hierarchical 3D electrodes for electrochemical energy storage. Nat Rev Mater. 2019;4(1):45.

    Article  Google Scholar 

  5. Jung KN, Kim J, Yamauchi Y, Park MS, Lee JW, Kim JH. Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes. J Mater Chem A. 2016;4(37):14050.

    Article  CAS  Google Scholar 

  6. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen ZW. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy. 2018;3(4):279.

    Article  Google Scholar 

  7. Xu BL, Qi SH, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.

    Article  CAS  Google Scholar 

  8. Xie X, Qi SH, Wu DX, Wang HP, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223.

    Article  CAS  Google Scholar 

  9. Mannix AJ, Kiraly B, Hersam MC, Guisinger NP. Synthesis and chemistry of elemental 2D materials. Nat Rev Chem. 2017;1(2):0014.

    Article  CAS  Google Scholar 

  10. Lu QP, Yu YF, Ma QL, Chen B, Zhang H. 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater. 2016;28(10):1917.

    Article  CAS  Google Scholar 

  11. Tan CL, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev. 2015;44(9):2713.

    Article  CAS  Google Scholar 

  12. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR, Liang LB, Louie SG, Ringe E, Zhou W, Kim SS, Naik RR, Sumpter BG, Terrones H, Xia FN, Wang YL, Zhu J, Akinwande D, Alem N, Schuler JA, Schaak RE, Terrones M, Robinson JA. Recent advances in two-dimensional materials beyond graphene. ACS Nano. 2015;9(12):11509.

    Article  CAS  Google Scholar 

  13. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699.

    Article  CAS  Google Scholar 

  14. Chia XY, Eng AYS, Ambrosi A, Tan SM, Pumera M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem Rev. 2015;115(21):11941.

    Article  CAS  Google Scholar 

  15. Singh A, Shirodkar SN, Waghmare UV. 1H and 1T polymorphs, structural transitions and anomalous properties of (Mo, W)(S, Se)2 monolayers: first-principles analysis. 2D Materials. 2015;2(3):035013.

    Article  CAS  Google Scholar 

  16. Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, Jin S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ Sci. 2014;7(8):2608.

    Article  CAS  Google Scholar 

  17. Mahler B, Hoepfner V, Liao K, Ozin GA. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J Am Chem Soc. 2014;136(40):14121.

    Article  CAS  Google Scholar 

  18. Enyashin AN, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G. New route for stabilization of 1T-WS2 and MoS2 phases. J Phys Chem C. 2011;115(50):24586.

    Article  CAS  Google Scholar 

  19. Levi R, Bitton O, Leitus G, Tenne R, Joselevich E. Field-effect transistors based on WS2 nanotubes with high current-carrying capacity. Nano Lett. 2013;13(8):3736.

    Article  CAS  Google Scholar 

  20. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100.

    Article  CAS  Google Scholar 

  21. Toh RJ, Sofer Z, Luxa J, Sedmidubský D, Pumera M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem Commun. 2017;53(21):3054.

    Article  CAS  Google Scholar 

  22. Ambrosi A, Sofer Z, Pumera M. 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem Commun. 2015;51(40):8450.

    Article  CAS  Google Scholar 

  23. Chou SS, Huang YK, Kim J, Kaehr B, Foley BM, Lu P, Dykstra C, Hopkins PE, Brinker CJ, Huang JX, Dravid VP. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. J Am Chem Soc. 2015;137(5):1742.

    Article  CAS  Google Scholar 

  24. Wang GX, Bewlay S, Yao J, Liu HK, Dou SX. Tungsten disulfide nanotubes for lithium storage. Electrochem Solid-State Lett. 2004;7(10):A321.

    Article  CAS  Google Scholar 

  25. Ghorai A, Midya A, Ray SK. Superior charge storage performance of WS2 quantum dots in a flexible solid state supercapacitor. New J Chem. 2018;42(5):3609.

    Article  CAS  Google Scholar 

  26. Xia DW, Gong F, Pei XD, Wang WB, Li H, Zeng W, Wu MQ, Papavassilou DV. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: a review. Chem Eng J. 2018;348:908.

    Article  CAS  Google Scholar 

  27. Jia P, Wen Q, Liu D, Zhou M, Jin XY, Ding LP, Dong HL, Lu DN, Jiang L, Guo W. Highly efficient ionic photocurrent generation through WS2-based 2D nanofluidic channels. Small. 2019;15(50):9.

    Article  CAS  Google Scholar 

  28. Elías AL, Perea-López N, Castro-Beltrán A, Berkdemir A, Lv R, Feng S, Long AD, Hayashi T, Kim YA, Endo M, Gutiérrez HR, Pradhan NR, Balicas L, Mallouk TE, López-Urías F, Terrones H, Terrones M. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano. 2013;7(6):5235.

    Article  CAS  Google Scholar 

  29. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res. 2013;46(5):1125.

    Article  CAS  Google Scholar 

  30. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang JX, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 2013;7(4):2898.

    Article  CAS  Google Scholar 

  31. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263.

    Article  Google Scholar 

  32. Zhao X, Ma X, Sun J, Li DH, Yang XR. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano. 2016;10(2):2159.

    Article  CAS  Google Scholar 

  33. Biccai S, Barwich S, Boland D, Harvey A, Hanlon D, McEvoy N, Coleman JN. Exfoliation of 2D materials by high shear mixing. 2D Materials. 2018;6(1):015008.

    Article  CAS  Google Scholar 

  34. Zhao G, Wu YZ, Shao YL, Hao XP. Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale. 2016;8(10):5407.

    Article  CAS  Google Scholar 

  35. Huang F, Jian JK, Wu R. Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. J Mater Sci. 2016;51(22):10160.

    Article  CAS  Google Scholar 

  36. Martínez-Merino P, Midgley SD, Martín EI, Estellé P, Alcántara R, Sánchez-Coronilla A, Grau-Crespo R, Navas J. Novel WS2-based nanofluids for concentrating solar power: performance characterization and molecular-level insights. ACS Appl Mater Interfaces. 2020;12(5):5793.

    Article  CAS  Google Scholar 

  37. Sharma P, Kumar A, Bankuru S, Chakraborty J, Puravankara S. Large-scale surfactant-free synthesis of WS2 nanosheets: an investigation into the detailed reaction chemistry of colloidal precipitation and their application as an anode material for lithium-ion and sodium-ion batteries. New J Chem. 2020;44(4):1594.

    Article  CAS  Google Scholar 

  38. Zhang Y, Yao YY, Sendeku MG, Yin L, Zhan XY, Wang F, Wang ZX, He J. Recent progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. Adv Mater. 2019;31(41):1901694.

    Article  CAS  Google Scholar 

  39. Dong LQ, Wang YY, Sun JC, Pan CF, Zhang QH, Gu L, Wan BS, Song C, Pan F, Wang C. Facile access to shape-controlled growth of WS2 monolayer via environment-friendly method. 2D Materials. 2018;6(1):015007.

    Article  CAS  Google Scholar 

  40. Ceballos F, Zereshki P, Zhao H. Separating electrons and holes by monolayer increments in van der Waals heterostructures. Phys Rev Mater. 2017;1(4):9.

    Google Scholar 

  41. Dai Y, Wu X, Sha DW, Chen M, Zou H, Ren J, Wang JJ, Yan XH. Facile self-assembly of Fe3O4 nanoparticles@WS2 nanosheets: a promising candidate for supercapacitor electrode. Electron Mater Lett. 2016;12(6):789.

    Article  CAS  Google Scholar 

  42. Fu Y, He DW, He JQ, Bian A, Zhang L, Liu SY, Wang YS, Zhao H. Effect of dielectric environment on excitonic dynamics in monolayer WS2. Adv Mater Interfaces. 2019;6(23):1901307.

    Article  CAS  Google Scholar 

  43. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008;3(9):563.

    Article  CAS  Google Scholar 

  44. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science. 2013;340(6139):1226419.

    Article  CAS  Google Scholar 

  45. Jha RK, Guha PK. Liquid exfoliated pristine WS2 nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors. Nanotechnology. 2016;27(47):475503.

    Article  CAS  Google Scholar 

  46. Shen JF, He YM, Wu JJ, Gao CT, Keyshar K, Zhang X, Yang YC, Ye MX, Vajtai R, Lou J, Ajayan PM. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 2015;15(8):5449.

    Article  CAS  Google Scholar 

  47. Owens DK. Some thermodynamic aspects of polymer adhesion. J Appl Polym Sci. 1970;14(7):1725.

    Article  CAS  Google Scholar 

  48. Han GQ, Liu YR, Hu WH, Dong B, Li X, Chai YM, Liu YQ, Liu CG. WS2 nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction. Mater Chem Phys. 2015;167:271.

    Article  CAS  Google Scholar 

  49. Li L, Lv R, Liu S, Wang X, Wang YG, Chen ZD, Wang J. Transition metal dichalcogenide (WS2 and MoS2) saturable absorbers for Q-switched Er-doped fiber lasers. Laser Phys. 2018;28(5):055106.

    Article  CAS  Google Scholar 

  50. Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg GS, Grunlan JC, Moriarty G, Chen J, Wang JZ, Minett AI, Nicolosi V, Coleman JN. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater. 2011;23(34):3944.

    Article  CAS  Google Scholar 

  51. Joensen P, Frindt RF, Morrison SR. Single-layer MoS2. Mater Res Bull. 1986;21(4):457.

    Article  CAS  Google Scholar 

  52. Lin CW, Zhu XJ, Feng J, Wu CZ, Hu SL, Peng J, Guo YQ, Peng LL, Zhao JY, Huang JL, Xie Y. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J Am Chem Soc. 2013;135(13):5144.

    Article  CAS  Google Scholar 

  53. Ayari A, Cobas E, Ogundadegbe O, Fuhrer MS. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J Appl Phys. 2007;101(1):014507.

    Article  CAS  Google Scholar 

  54. Gordon RA, Yang D, Crozier ED, Jiang DT, Frindt RF. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Physical Review B. 2002;65(12):125407.

    Article  CAS  Google Scholar 

  55. Tsai HL, Heising J, Schindler JL, Kannewurf CR, Kanatzidis MG. Exfoliated-restacked phase of WS2. Chem Mater. 1997;9(4):879.

    Article  CAS  Google Scholar 

  56. Lin HC, Wang JW, Luo QQ, Peng H, Luo CH, Qi RJ, Huang R, Traas-Sejdic J, Duan CG. Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2. J Alloys Compounds. 2017;699:222.

    Article  CAS  Google Scholar 

  57. Wang Y, Zhou CG, Wang WC, Zhao YP. Preparation of two dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound. Ind Eng Chem Res. 2013;52(11):4379.

    Article  CAS  Google Scholar 

  58. Zheng J, Zhang H, Dong SH, Liu YP, Tai Nai C, Suk Shin H, Young Jeong H, Liu B, Ping LK. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat Commun. 2014;5(1):2995.

    Article  CAS  Google Scholar 

  59. Xu ZH, Lv YF, Li JZ, Huang F, Nie PB, Zhang SW, Zhao SX, Wei GD. CVD controlled growth of large-scale WS2 monolayers. RSC Adv. 2019;9(51):29628.

    Article  CAS  Google Scholar 

  60. Liang JY, Zhang LJ, Li XX, Pan BJ, Luo TY, Liu DY, Zhou C, Liu NN, Hu Y, Yang KQ, Huang SM. Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition. Nano Res. 2019;12(11):2802.

    Article  CAS  Google Scholar 

  61. Thangaraja A, Shinde SM, Kalita G, Tanemura M. Effect of WO3 precursor and sulfurization process on WS2 crystals growth by atmospheric pressure CVD. Mater Lett. 2015;156:156.

    Article  CAS  Google Scholar 

  62. Godin K, Kang KN, Fu SC, Yang EH. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates. J Phys D Appl Phys. 2016;49(32):10.

    Article  CAS  Google Scholar 

  63. Zhu Y, Yi H, Hao QY, Liu JD, Ke YX, Wang Z, Fan DY, Zhang WJ. Scalable synthesis and defect modulation of large monolayer WS2 via annealing in H2S atmosphere/thiol treatment to enhance photoluminescence. Appl Surf Sci. 2019;485:101.

    Article  CAS  Google Scholar 

  64. Nguyen TP, Nguyen D, Nguyen VH, Le TH, Viet L, Vo DV, Nguyen QV, Le HS, Jang HW, Kim SY, Le QV. Facile synthesis of WS2 hollow spheres and their hydrogen evolution reaction performance. Appl Surf Sci. 2019;505:144574.

    Article  CAS  Google Scholar 

  65. Okada M, Okada N, Chang WH, Endo T, Ando A, Shimizu T, Kubo T, Miyata Y, Irisawa T. Gas-source CVD growth of atomic layered WS2 from WF6 and H2S precursors with high grain size uniformity. Sci Rep. 2019;9:17678.

    Article  CAS  Google Scholar 

  66. Groven B, Heyne M, Mehta AN, Bender H, Nuytten T, Meersschaut J, Conard T, Verdonck P, Elshocht SV, Vandervorst W, Gendt SD, Heyns M, Radu I, Caymax M, Delabie A. Plasma-enhanced atomic layer deposition of two-dimensional WS2 from WF6, H2 Plasma, and H2S. Chem Mater. 2017;29(7):2927.

    Article  CAS  Google Scholar 

  67. Nandi DK, Yeo S, Ansari MZ, Sinha S, Cheon T, Kwon J, Kim H, Heo J, Song T, Kim SH. Thickness-dependent electrochemical response of plasma enhanced atomic layer deposited WS2 anodes in Na-ion battery. Electrochim Acta. 2019;322:134766.

    Article  CAS  Google Scholar 

  68. Ahmadi A, Shoushtari MZ, Farbod M. Photoelectrochemical application of WS2 nanosheets prepared via a low-temperature CVD method. J Mater Sci. 2019;30(7):6342.

    CAS  Google Scholar 

  69. Das U, Bhattacharjee S, Mahato B, Prajapat M, Sarkar P, Roy A. Uniform, large-scale growth of WS2 nanodomains via CVD technique for stable non-volatile RRAM application. Mater Sci Semicond Process. 2020;107:104837.

    Article  CAS  Google Scholar 

  70. Brent JR, Savjani N, O'Brien P. Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog Mater Sci. 2017;89:411.

    Article  CAS  Google Scholar 

  71. Liu ZC, Murphy AWA, Kuppe C, Hooper DC, Valev VK, Ilie A. WS2 Nanotubes, 2D nanomeshes, and 2D in-plane films through one single chemical vapor deposition route. ACS Nano. 2019;13(4):3896.

    Article  CAS  Google Scholar 

  72. Whitby RLD, Hsu WK, Kroto HW, Walton DRM. Conversion of amorphous WO3–x into WS2 nanotubes. Phys Chem Chem Phys. 2002;4(16):3938.

    Article  CAS  Google Scholar 

  73. Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R. Bulk Synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc. 1996;118(23):5362.

    Article  CAS  Google Scholar 

  74. Carvalho TCV, Araujo FDV, dos Santos CC, Alencar LMR, Ribeiro-Soares J, Late DJ, Lobo AO, Filho AGS, Alencar RS, Viana BC. Temperature-dependent phonon dynamics of supported and suspended monolayer tungsten diselenide. AIP Adv. 2019;9(8):085316.

    Article  CAS  Google Scholar 

  75. Lan CY, Zhou ZY, Zhou ZF, Li C, Shu L, Shen LF, Li DP, Dong RT, Yip SP, Ho JC. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 2018;11(6):3371.

    Article  CAS  Google Scholar 

  76. Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today. 2017;20(3):116.

    Article  CAS  Google Scholar 

  77. Kang KN, Godin K, Yang EH. The growth scale and kinetics of WS2 monolayers under varying H2 concentration. Sci Rep. 2015;5:13205.

    Article  CAS  Google Scholar 

  78. Ling X, Lee YH, Lin YX, Fang WJ, Yu L, Dresselhaus MS, Kong J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014;14(2):464.

    Article  CAS  Google Scholar 

  79. Liu PY, Luo T, Xing J, Xu H, Hao HY, Liu H, Dong JJ. Large-area WS2 film with big single domains grown by chemical vapor deposition. Nanoscale Res Lett. 2017;12(1):558.

    Article  CAS  Google Scholar 

  80. Cong CX, Shang JZ, Wu X, Cao BC, Peimyoo N, Qiu CY, Sun LT, Yu T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv Opt Mater. 2014;2(2):131.

    Article  CAS  Google Scholar 

  81. Su LQ, Yu YF, Cao LY, Zhang Y. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res. 2015;8(8):2686.

    Article  CAS  Google Scholar 

  82. Li SS, Wang SF, Tang DM, Zhao WJ, Xu HL, Chu LQ, Bando Y, Golberg D, Eda G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl Mater Today. 2015;1(1):60.

    Article  Google Scholar 

  83. Lan CY, Kang XL, Wei RJ, Meng Y, Yip SP, Zhang H, Ho JC. Utilizing a NaOH promoter to achieve large single-domain monolayer WS2 films via modified chemical vapor deposition. ACS Appl Mater Interfaces. 2019;11(38):35238.

    Article  CAS  Google Scholar 

  84. Xu ZH, Lv YF, Huang F, Zhao C, Zhao SC, Wei GD. ZnO-controlled growth of monolayer WS2 through chemical vapor deposition. Materials. 2019;12(12):1883.

    Article  CAS  Google Scholar 

  85. Kim H, Han GH, Yun SJ, Zhao J, Keum DH, Jeong HY, Ly TH, Jin Y, Park J-H, Moon BH, Kim S-W, Lee YH. Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology. 2017;28(36):36LT01.

    Article  CAS  Google Scholar 

  86. Brunken S, Mientus R, Ellmer K. Metal-sulfide assisted rapid crystallization of highly (001)-textured tungsten disulphide (WS2) films on metallic back contacts. Physica Status Solidi (A) Appl Mater. 2012;209(2):317.

    Article  CAS  Google Scholar 

  87. Regula M, Ballif C, Remskar M, Levy F. Crystallinity and texture promotion in WS2 thin films. J Vacuum Sci Technol A. 1997;15(4):2323.

    Article  CAS  Google Scholar 

  88. Cao SX, Liu TM, Hussain S, Zen W, Peng XH, Pan FS. Hydrothermal synthesis, characterization and optical absorption property of nanoscale WS2/TiO2 composites. Physica E Low-dimensional Syst Nanostruct. 2014;68:171.

    Article  CAS  Google Scholar 

  89. Chen DY, Ji G, Ding B, Ma Y, Qu BH, Chen WX, Lee JY. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale. 2013;5(17):7890.

    Article  CAS  Google Scholar 

  90. Ratha S, Rout CS. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces. 2013;5(21):11427.

    Article  CAS  Google Scholar 

  91. Shang YZ, Xia JB, Xu ZD, Chen WX. Hydrothermal synthesis and characterization of quasi-1-D tungsten disulfide nanocrystal. J Disper Sci Technol. 2005;26(5):635.

    Article  CAS  Google Scholar 

  92. Huang KJ, Liu YJ, Cao JT, Wang HB. An aptamer electrochemical assay for sensitive detection of immunoglobulin E based on tungsten disulfide–graphene composites and gold nanoparticles. RSC Adv. 2014;4(69):36742.

    Article  CAS  Google Scholar 

  93. Cao SX, Liu TM, Hussain S, Zeng W, Pan FS, Peng XH. Synthesis and characterization of novel chrysanthemum-like tungsten disulfide (WS2) nanostructure: structure, growth and optical absorption property. J Mater Sci. 2015;26(2):809.

    CAS  Google Scholar 

  94. Singh VK, Mishra H, Ali R, Umrao S, Srivastava R, Abraham S, Misra A, Singh VN, Mishra H, Tiwari RS, Srivastava A. In situ functionalized fluorescent WS2-QDs as sensitive and selective probe for Fe3+ and a detailed study of its fluorescence quenching. ACS Appl Nano Mater. 2019;2(1):566.

    Article  CAS  Google Scholar 

  95. Yan YH, Zhang CL, Gu W, Ding CP, Li XC, Xian YZ. Facile synthesis of water-soluble WS2 quantum dots for turn-on fluorescent measurement of lipoic acid. J Phys Chem C. 2016;120(22):12170.

    Article  CAS  Google Scholar 

  96. Alaei M, Mahjoub A, Rashidi A. Facile method for the preparation of the WS2 nanoparticles. J Nanosci Nanotechnol. 2010;10(9):6128.

    Article  CAS  Google Scholar 

  97. Nagaraju C, Muralee VV, Gopi C, Ahn JW, Kim HJ. Hydrothermal synthesis of MoS2 and WS2 nanoparticles for high-performance supercapacitor applications. New J Chem. 2018;42(15):12357.

    Article  CAS  Google Scholar 

  98. Wang JT, Zhang W, Wang WB, Wu YJ, Zhou L, Cao F. One-pot bottom-up fabrication of biocompatible PEGylated WS2 nanoparticles for CT-guided photothermal therapy of tumors in vivo. Biochem Biophys Res Commun. 2019;511(3):587.

    Article  CAS  Google Scholar 

  99. Xu TT, Liu YY, Pei YY, Chen YP, Jiang ZM, Shi ZF, Xu JM, Wu D, Tian YT, Li XJ. The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes. Sens Actuat B. 2018;259:789.

    Article  CAS  Google Scholar 

  100. Zhang DQ, Liu TT, Cheng JY, Liang S, Chai JX, Yang XY, Wang H, Zheng GP, Gao MS. Controllable synthesis and characterization of tungsten disulfide nanosheets as promising nanomaterials for electronic devices. Ceram Int. 2019;45(9):12443.

    Article  CAS  Google Scholar 

  101. Shifa TA, Wang FM, Cheng ZZ, Zhan XY, Wang ZX, Liu KL, Muhammad S, Sun LF, He J. A vertical-oriented WS2 nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction. Nanoscale. 2015;7(35):14760.

    Article  CAS  Google Scholar 

  102. Therese HA, Li JX, Kolb U, Tremel W. Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route. Solid State Sci. 2005;7(1):67.

    Article  CAS  Google Scholar 

  103. Kumar VB, Harel Y, Ben-Ishay R, Lellouche JP, Gedanken A. Functionalization of WS2 nanotubes with fluorescent C-dots and conductive polythiophenes. Macromol Chem Phys. 2019;220(7):1800476.

    Article  CAS  Google Scholar 

  104. Li YD, Li XL, He RR, Zhu J, Deng ZX. Artificial lamellar mesostructures to WS2 nanotubes. J Am Chem Soc. 2002;124(7):1411.

    Article  CAS  Google Scholar 

  105. Tang GG, Li CS, Tang H, Yang F, Zhu BY, Li GW. Synthesis and tribological properties of WS2 nanorods. Chin J Inorg Chem. 2011;27(7):1368.

    CAS  Google Scholar 

  106. Tang GG, Tang H, Li CS, Li WJ, Ji XR. Surfactant-assisted hydrothermal synthesis and characterization of WS2 nanorods. Mater Lett. 2011;65(23):3457.

    Article  CAS  Google Scholar 

  107. Cao SX, Liu TM, Hussain S, Zeng W, Peng XH, Pan FS. Hydrothermal synthesis of variety low dimensional WS2 nanostructures. Mater Lett. 2014;129:205.

    Article  CAS  Google Scholar 

  108. Cao SX, Zhao C, Peng LL, Han T. Synthesis of uniform WS2 nanoflowers via a sodium silicate-assisted hydrothermal process. J Mater Sci. 2016;27(4):3821.

    CAS  Google Scholar 

  109. Hasani A, Nguyen TP, Tekalgne M, Le QV, Choi KS, Lee TH, Park TJ, Jang HW, Kim SY. The role of metal dopants in WS2 nanoflowers in enhancing the hydrogen evolution reaction. Appl Catal A. 2018;567:73.

    Article  CAS  Google Scholar 

  110. Cao SX, Zhao C, Peng LL. The 3D WS2 microspheres: preparation, characterization and optical absorption properties. Mater Lett. 2016;164:452.

    Article  CAS  Google Scholar 

  111. Shiva K, Ramakrishna Matte HSS, Rajendra HB, Bhattacharyya AJ, Rao CNR. Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy. 2013;2(5):787.

    Article  CAS  Google Scholar 

  112. Su D, Dou SX, Wang GX. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem Commun. 2014;50(32):4192.

    Article  CAS  Google Scholar 

  113. Vattikuti SVP, Shim J, Byon C. 1D Bi2S3 nanorod/2D e-WS2 nanosheet heterojunction photocatalyst for enhanced photocatalytic activity. J Solid State Chem. 2018;258:526.

    Article  CAS  Google Scholar 

  114. Reddy DA, Park H, Ma R, Kumar DP, Lim M, Kim TK. Heterostructured WS2–MoS2 ultrathin nanosheets integrated on CdS nanorods to promote charge separation and migration and improve solar-driven photocatalytic hydrogen evolution. Chemsuschem. 2017;10(7):1563.

    Article  CAS  Google Scholar 

  115. Shang X, Rao Y, Lu SS, Dong B, Zhang LM, Liu XH, Li X, Liu YR, Chai YM, Liu CG. Novel WS2/WO3 heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction. Mater Chem Phys. 2017;197:12.

    Article  CAS  Google Scholar 

  116. Wu YC, Liu ZM, Li YR, Chen JT, Zhu XX, Na P. WS2 nanodots-modified TiO2 nanotubes to enhance visible-light photocatalytic activity. Mater Lett. 2019;240:47.

    Article  CAS  Google Scholar 

  117. Chen YP, Pei YY, Jiang ZM, Shi ZF, Xu JM, Wu D, Xu TT, Tian YT, Wang XC, Li XJ. Humidity sensing properties of the hydrothermally synthesized WS2-modified SnO2 hybrid nanocomposite. Appl Surf Sci. 2018;447:325.

    Article  CAS  Google Scholar 

  118. Jiang Z, Xu TT, Dai SG, Yan CC, Ma CY, Wang XC, Xu JM, Zhang S, Wang Y. 3D Mesoporous Ni(OH)2/WS2 nanofibers with highly enhanced performances for hybrid supercapacitors. Energy Technol. 2019;7(3):1800476.

    Article  CAS  Google Scholar 

  119. Tang J, Salunkhe RR, Zhang H, Malgras V, Ahamad T, Alshehri SM, Kobayashi N, Tominaka S, Ide Y, Kim JH, Yamauchi Y. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci Rep. 2016;6(1):30295.

    Article  CAS  Google Scholar 

  120. Wulan Septiani NL, Kaneti YV, Fathoni KB, Wang J, Ide Y, Yuliarto B, Nugrahaad, Dipojonod HK, Nanjundan AK, Golberg D, Bando Y, Yamauchi Y. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy. 2020;67:104270.

    Article  CAS  Google Scholar 

  121. Makino S, Yamauchi Y, Sugimoto W. Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors. J Power Sources. 2013;227:153.

    Article  CAS  Google Scholar 

  122. Ovchinnikov D, Allain A, Huang YS, Dumcenco D, Kis A. Electrical transport properties of single-layer WS2. ACS Nano. 2014;8(8):8174.

    Article  CAS  Google Scholar 

  123. Ratha S, Rout CS. Supercapacitor Electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces. 2013;5(21):11427.

    Article  CAS  Google Scholar 

  124. Mayorga-Martinez CC, Moo JGS, Khezri B, Song P, Fisher AC, Sofer Z, et al. Self-propelled supercapacitors for on-demand circuit configuration based on WS2 nanoparticles micromachines. Adv Func Mater. 2016;26(36):6662.

    Article  CAS  Google Scholar 

  125. Liu Y, Wang W, Huang HB, Gu L, Wang YW, Peng XS. The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem Commun. 2014;50(34):4485.

    Article  CAS  Google Scholar 

  126. Choudhary N, Li C, Chung HS, Moore J, Thomas J, Jung Y. High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 Layers. ACS Nano. 2016;10(12):10726.

    Article  CAS  Google Scholar 

  127. Khalil A, Liu Q, He Q, Xiang T, Liu DB, Wang CD, Fang Q, Song L. Metallic 1T-WS2 nanoribbons as highly conductive electrodes for supercapacitors. RSC Adv. 2016;6(54):48788.

    Article  CAS  Google Scholar 

  128. Gholamvand Z, McAteer D, Harvey A, Backes C, Coleman JN. Electrochemical applications of two-dimensional nanosheets: the effect of nanosheet length and thickness. Chem Mater. 2016;28(8):2641.

    Article  CAS  Google Scholar 

  129. Hu BL, Qin XY, Asiri AM, Alamry KA, Al-Youbi AO, Sun XP. WS2 nanoparticles–encapsulated amorphous carbon tubes: a novel electrode material for supercapacitors with a high rate capability. Electrochem Commun. 2013;28:75.

    Article  CAS  Google Scholar 

  130. Chen WS, Yu X, Zhao ZX, Ji SC, Feng LG. Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor. Electrochim Acta. 2019;298:313.

    Article  CAS  Google Scholar 

  131. Xu YP, Wang LZ, Xu Q, Liu LY, Fang XC, Shi C, Ye B, Chen LY, Peng WY, Liu ZJ, Chen WF. 3D hybrids based on WS2/N, S co-doped reduced graphene oxide: facile fabrication and superior performance in supercapacitors. Appl Surf Sci. 2019;480:1126.

    Article  CAS  Google Scholar 

  132. Vyskocil J, Mayorga-Martinez CC, Szokolova K, Dash A, Gonzalez-Julian J, Sofer Z, Pumera M. 2D Stacks of MXene Ti3C2 and 1T-Phase WS2 with enhanced capacitive behavior. Chem Electro Chem. 2019;6(15):3982.

    CAS  Google Scholar 

  133. Prasanna AL, Raghavendra KVG, Himasree P, Durga IK, Gopi C, Rao SS, Kim HJ. One-pot facile synthesis of nanorice-like structured CuS@WS2 as an advanced electroactive material for high-performance supercapacitors. SN Appl Sci. 2020;2(3):409.

    Article  CAS  Google Scholar 

  134. Shang X, Chi JQ, Lu SS, Gou JX, Dong B, Li X, Liu YR, Yan KL, Chai YM, Liu CG. Carbon fiber cloth supported interwoven WS2 nanosplates with highly enhanced performances for supercapacitors. Appl Surf Sci. 2017;392:708.

    Article  CAS  Google Scholar 

  135. Li L, Gao JL, Cecen V, Fan JC, Shi PH, Xu QJ, Min YL. Hierarchical WS2@NiCo2O4 core-shell heterostructure arrays supported on carbon cloth as high-performance electrodes for symmetric flexible supercapacitors. ACS Omega. 2020;5(9):4657.

    Article  CAS  Google Scholar 

  136. Kaplan-Ashiri I, Cohen SR, Gartsman K, Rosentsveig R, Seifert G, Tenne R. Mechanical behavior of individual WS2 nanotubes. J Mater Res. 2011;19(02):454.

    Article  Google Scholar 

  137. Liu S, Zeng YX, Zhang M, Xie SL, Tong YX, Cheng FL, Lu XH. Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. J Mater Chem A. 2017;5(40):21460.

    Article  CAS  Google Scholar 

  138. Hwang SM, Lim YG, Kim JG, Heo YU, Lim JH, Yamauchi Y, Park MS, Kim YJ, Dou SX, Kim JH. A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy. 2014;10:53.

    Article  CAS  Google Scholar 

  139. Lee J, Moon J, Han SA, Kim J, Malgras V, Heo YU, Kim J, Lee SM, Liu HK, Dou SX, Yamauchi Y, Park MS, Kim JH. Everlasting living and breathing Gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano. 2019;13(8):9607.

    Article  CAS  Google Scholar 

  140. Hwang SM, Kim SY, Kim JG, Kim KJ, Lee JW, Park MS, Kim YJ, Shahabuddin M, Yamauchi Y, Kim JH. Electrospun manganese–cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale. 2015;7(18):8351.

    Article  CAS  Google Scholar 

  141. Anto Jeffery A, Nethravathi C, Rajamathi M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M = Mo, W). J Phys Chem C. 2014;118(2):1386.

    Article  CAS  Google Scholar 

  142. Bhandavat R, David L, Singh G. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J Phys Chem Lett. 2012;3(11):1523.

    Article  CAS  Google Scholar 

  143. Yang WF, Wang JW, Si CH, Peng ZQ, Frenzel J, Eggeler G, Zhang ZH. [001] preferentially-oriented 2D tungsten disulfide nanosheets as anode materials for superior lithium storage. J Mater Chem A. 2015;3(34):17811.

    Article  CAS  Google Scholar 

  144. Chen RJ, Zhao T, Wu WP, Wu F, Li L, Qian J, Xu R, Wu HM, Albishri HM, Al-Bogami AS, El-Hady DA, Lu J, Amine K. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 2014;14(10):5899.

    Article  CAS  Google Scholar 

  145. Yebka B, Julien C. Studies of lithium intercalation in 3R-WS2. Solid State Ionics. 1996;90(1):141.

    Article  CAS  Google Scholar 

  146. Julien CM. Lithium intercalated compounds: charge transfer and related properties. Mater Sci Eng. 2003;40(2):47.

    Article  Google Scholar 

  147. Seo JW, Jun YW, Park SW, Nah H, Moon T, Park B, Kim JG, Kim YJ, Cheon J. Two-dimensional nanosheet crystals. Angew Chem Int Ed. 2007;46(46):8828.

    Article  CAS  Google Scholar 

  148. Liu H, Su D, Wang G, Qiao SZ. An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J Mater Chem. 2012;22(34):17437.

    Article  CAS  Google Scholar 

  149. Fang XP, Hua CX, Wu CR, Wang XF, Shen LY, Kong QY, Wang JZ, Hu YS, Wang ZX, Chen LQ. Synthesis and electrochemical performance of graphene-like WS2. Chem. 2013;19(18):5694.

    Article  CAS  Google Scholar 

  150. Qian JW, Peng ZJ, Wang PL, Fu XL. Bulk Fabrication of WS2 nanoplates: investigation on the morphology evolution and electrochemical performance. ACS Appl Mater Interfaces. 2016;8(26):16876.

    Article  CAS  Google Scholar 

  151. Feng CQ, Huang LF, Guo ZP, Liu HK. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochem Commun. 2007;9(1):119.

    Article  CAS  Google Scholar 

  152. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.

    Article  CAS  Google Scholar 

  153. Lei W, Xiao WP, Li JD, Li GR, Wu ZX, Xuan CJ, Luo D, Deng YP, Wang DL, Chen ZW. Highly nitrogen-doped three-dimensional carbon fibers network with superior sodium storage capacity. ACS Appl Mater Interfaces. 2017;9(34):28604.

    Article  CAS  Google Scholar 

  154. Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Func Mater. 2013;23(8):947.

    Article  CAS  Google Scholar 

  155. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529.

    Article  CAS  Google Scholar 

  156. Wang X, Huang JF, Li JY, Cao LY, Hao W, Xu ZW, Kang Q. Controlling the layered structure of WS2 nanosheets to promote Na+ insertion with enhanced Na-ion storage performance. Electrochim Acta. 2016;222:1724.

    Article  CAS  Google Scholar 

  157. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114(23):11636.

    Article  CAS  Google Scholar 

  158. Wang HM, Yuan Q, Wang D, Chen G, Cheng X, Kups T, Schaaf P. Disordered surface formation of WS2 via hydrogen plasma with enhanced anode performances for lithium and sodium ion batteries. Sustain Energy Fuels. 2019;3(3):865.

    Article  CAS  Google Scholar 

  159. Wang JB, Yu L, Zhou ZW, Zeng LX, Wei MD. Template-free synthesis of metallic WS2 hollow microspheres as an anode for the sodium-ion battery. J Colloid Interface Sci. 2019;557:722.

    Article  CAS  Google Scholar 

  160. Song YC, Liao JX, Chen C, Yang J, Chen JC, Gong F, Wang SZ, Xu ZQ, Wu MQ. Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb WS2 anodes modified by graphene doping for lithium and sodium ion batteries. Carbon. 2019;142:697.

    Article  CAS  Google Scholar 

  161. Li JM, Shi XD, Fang J, Li J, Zhang ZA. Facile synthesis of WS2 nanosheets–carbon composites anodes for sodium and lithium ion batteries. Chem Nano Mater. 2016;2(10):997.

    CAS  Google Scholar 

  162. Pang Q, Gao Y, Zhao YY, Ju YM, Qiu HL, Wei YJ, Liu BB, Zou B, Du F, Chen G. Improved lithium-ion and sodium-ion storage properties from few-layered WS2 nanosheets embedded in a mesoporous CMK-3 matrix. Chemistry. 2017;23(29):7074.

    Article  CAS  Google Scholar 

  163. Hu X, Liu YJ, Li JW, Wang GX, Chen JX, Zhong GB, Zhan HB, Wen ZH. Self-assembling of conductive interlayer-expanded WS2 nanosheets into 3D hollow hierarchical microflower bud hybrids for fast and stable sodium storage. Adv Func Mater. 2020;30(5):1907677.

    Article  CAS  Google Scholar 

  164. Li X, Zhang JY, Liu ZC, Fu CC, Niu CM. WS2 nanoflowers on carbon nanotube vines with enhanced electrochemical performances for lithium and sodium-ion batteries. J Alloy Compd. 2018;766:656.

    Article  CAS  Google Scholar 

  165. Zhang RD, Bao JZ, Pan YL, Sun CF. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem Sci. 2019;10(9):2604.

    Article  CAS  Google Scholar 

  166. Babu G, Masurkar N, Al Salem H, Arava LMR. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J Am Chem Soc. 2017;139(1):171.

    Article  CAS  Google Scholar 

  167. Paolella A, Laul D, Timoshevskii V, Zhu W, Marras S, Bertoni G, Wahba AS, Girard G, Gagnon C, Rodrigue L, Commarieu B, Guerfi A, Gauvin R, Trudeau ML, Vijh A, Armand M, Zaghib K. The role of metal disulfide interlayer in Li–S batteries. J Phys Chem C. 2018;122(2):1014.

    Article  CAS  Google Scholar 

  168. Lei TY, Chen W, Huang JW, Yan CY, Sun HX, Wang C, Zhang WL, Li YT, Xiong J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv Energy Mater. 2017;7(4):1601843.

    Article  CAS  Google Scholar 

  169. Zhao H, Wu H, Wu JH, Li JL, Wang YJ, Zhang Y, Liu H. Preparation of MoS2/WS2 nanosheets by liquid phase exfoliation with assistance of epigallocatechin gallate and study as an additive for high-performance lithium-sulfur batteries. J Colloid Interface Sci. 2019;552:554.

    Article  CAS  Google Scholar 

  170. Ali S, Waqas M, Chen N, Chen D, Han Y, Boateng B, Xiong J, Han JC, He WD. Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries. Compos B Eng. 2019;174:107025.

    Article  CAS  Google Scholar 

  171. Zhang CY, Lu ZW, Wang YH, Dai Z, Zhao H, Sun GZ, Lan W, Pan XJ, Zhou JY, Xie EQ. Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium–sulfur batteries. Chem Eng J. 2020;392:123734.

    Article  CAS  Google Scholar 

  172. Park J, Yu BC, Park JS, Choi JW, Kim C, Sung YE, Goodenough JB. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv Energy Mater. 2017;7(11):1602567.

    Article  CAS  Google Scholar 

  173. Ali S, Waqas M, Jing XP, Chen N, Chen DJ, Xiong J, He WD. Carbon–tungsten disulfide composite bilayer separator for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces. 2018;10(46):39417.

    Article  CAS  Google Scholar 

  174. Zhu C, Gao DQ, Ding J, Chao DL, Wang J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem Soc Rev. 2018;47(12):4332.

    Article  CAS  Google Scholar 

  175. Tao HC, Gao YN, Talreja N, Guo F, Texter J, Yan C, Sun ZY. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J Mater Chem A. 2017;5(16):7257.

    Article  CAS  Google Scholar 

  176. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35(7):583.

    Article  CAS  Google Scholar 

  177. Tsai C, Chan K, Abild-Pedersen F, Nørskov JK. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys. 2014;16(26):13156.

    Article  CAS  Google Scholar 

  178. Zhou HQ, Yu F, Sun JY, He R, Wang YM, Guo CF, Wang F, Lan YC, Ren ZF, Chen S. Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. J Mater Chem A. 2016;4(24):9472.

    Article  CAS  Google Scholar 

  179. Duan J, Chen S, Chambers BA, Andersson GG, Qiao SZ. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv Mater. 2015;27(28):4234.

    Article  CAS  Google Scholar 

  180. Voiry D, Yamaguchi H, Li JW, Silva R, Alves DCB, Fujita T, Chen MW, Asefa T, Shenoy VB, Eda G, Chhowalla M. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater. 2013;12(9):850.

    Article  CAS  Google Scholar 

  181. Maiti A, Srivastava SK. Sulphur edge and vacancy assisted nitrogen–phosphorus co-doped exfoliated tungsten disulfide: a superior electrocatalyst for hydrogen evolution reaction. J Mater Chem A. 2018;6(40):19712.

    Article  CAS  Google Scholar 

  182. Fu Q, Yang L, Wang WH, Han AL, Huang J, Du PW, Fan ZY, Zhang JY, Xiang B. Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(1–x)Se2x with a tunable band gap. Adv Mater. 2015;27(32):4732.

    Article  CAS  Google Scholar 

  183. Li HL, Cui YT, Pi MY, Li DM. The role of strain induced band modulation of WS2-GeC heterostructure for the hydrogen evolution. Phys Scr. 2020;95(5):055801.

    Article  CAS  Google Scholar 

  184. Wu L, van Hoof AJF, Dzade NY, Gao L, Richard M-I, Friedrich H, Leeuw NHD, Hensen EJM, Hofmann JP. Enhancing the electrocatalytic activity of 2H-WS2 for hydrogen evolution via defect engineering. Phys Chem Chem Phys. 2019;21(11):6071.

    Article  CAS  Google Scholar 

  185. Wang FM, He P, Li YC, Shifa TA, Deng Y, Liu KL, Wang QS, Wang F, Wen Y, Wang ZX, Zhan XY, Sun LF, He J. Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis. Adv Func Mater. 2017;27(7):1605802.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51672194 and 51702241), Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (Grant No. T201602), Key Program of Natural Science Foundation of Hubei Province, China (Contract No. 2017CFA004), the Special Project of Central Government for Local Science and Technology Development of Hubei Province (Grant No. 2019ZYYD076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Lei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Xiao, JL., Liu, HP. et al. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten 2, 217–239 (2020). https://doi.org/10.1007/s42864-020-00054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-020-00054-6

Keywords

Navigation