Skip to main content
Log in

Facies, Geochemistry, and Ceramic Properties of Corumbataí Formation, Upper Permian of Paraná Basin, and its Application in the Ceramic Industry, Brazil

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

The supply of Corumbataí Formation rocks, which occur widely in the State of São Paulo, Brazil, and are used by Santa Gertrudes Ceramic Cluster, is dwindling and prospecting for new deposits is essential. The current study aimed to map and characterize new reserves of ceramic raw materials which would guarantee mineral and economic sustainability of the important concentration of ceramic-processing capability in that area, and thereby contribute to improving and diversifying the range of products manufactured and to promoting a greater presence in the international market. To achieve the proposed objectives, 16 profiles were sampled and the samples were submitted to granulometric analysis by laser diffraction, and the major elements by inductively coupled plasma-mass spectrometry, and the mineralogical compositions of clay samples were determined by X-ray diffraction and ceramic properties. Six lithofacies were identified and grouped into two facies associations: a lower shoreface association comprising massive siltstone (Sm) and laminated siltstone (Sl); lithofacies, and an upper shoreface association comprising heterolithic sandstone (Sh), lenticular sandstone (Sle), intercalated sandstone/siltstone (Si), and altered siltstone (Sa) lithofacies. The lithofacies of the lower shoreface association were more clayey, flux with a significant presence of illite and microcline, and a more uniform granulometry distribution, which made its classification possible, technologically, as stoneware and semi stoneware. The main application of this material is in the production of coatings through the wet milling process. The lithofacies of the upper shoreface association was sandier, had a refractory presence with kaolinite and montmorillonite, and had a less uniform granulometric distribution; technologically, it can be characterized as porous and semi-porous. The main application of this material is in the production of coatings by the dry milling process. The results obtained by facies analysis combined with the geochemical and ceramic properties of the Corumbataí Formation rocks revealed both vertical and lateral variations of the lithofacies, which influence their properties, behavior, and application as ceramic raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Associação Paulista das Cerâmicas de Revestimento-ASPACER. (2021). Panorama da indústria cerâmica paulista. https://www.aspacer.com.br/estatisticas/. Accessed 7 Oct 2021

  • Azzi A.A., Marek Osacký, M., Uhlík, P., Mária Čaplovičová, M., Zanardo, A., & Jana Madejová, J. (2016). Characterization of clays from the Corumbataí Formation used as raw material for ceramic industry in the Santa Gertrudes district, São Paulo, Brazil. Applied Clay Science, 1–11.

  • Beltrán, V., Sánchez, E., García-Ten, J., & Ginés, F. (1996). Materias primas empleadas en la fabricación de baldosas de pasta blanca en España. Técnica Cerámica, 241, 114–128.

    Google Scholar 

  • Bergaya, F., & Lagaly, G. (2006). General introduction: Clays, clay minerals, and clay science. Developments in Clay Science, 1, 1–18.

    Article  Google Scholar 

  • Boix, A., Gargallo., M., Jordan., M.M., Segura., R., & Sanfeliu., T. (1994). Mineralogy and technological properties of clays used in the ceramic floor and wall tile sector. Técnica Cerámica, 224, 404–413.

  • Brindley, G. W., & Brown, G. (1980). X-ray Diffraction procedures for clay mineral identification. In G. W. Brindley & G. Brown (Eds.), Crystal Structures of Clay Minerals and their X-ray Identification (pp. 305–360). Mineralogical Society.

    Chapter  Google Scholar 

  • Christofoletti, S. R., & Moreno, M. M. T. (2011). Sustentabilidade da mineração no polo cerâmico de Santa Gertrudes, São Paulo-Brasil. Cerâmica Industrial, 16, 35–42.

    Google Scholar 

  • Christofoletti, S. R., Moreno, M. M. T., & Batezelli, A. (2006). Análise de fácies da Formação Corumbataí (Grupo Passa Dois, Bacia do Paraná, Neopermiano), com vista ao emprego na indústria de revestimento cerâmico. Revista Brasileira De Geociências, 36, 488–498.

    Article  Google Scholar 

  • Christofoletti, S. R., Moreno, M. M. T., & Motta, J. F. M. (2009). La Formación Corumbataí y su importancia en la industria cerámica del estado de São Paulo-Brasil. Matéria, 14, 705–715.

    Google Scholar 

  • Christofoletti, S.R., Moreno, M.M.T., Del Roveri, C., & Zanardo, A. (2010). Qualidade em cerâmica: 14 anos de pesquisa em matéria prima cerâmica. Anais do 54º Congresso Brasileiro de Cerâmica, Foz do Iguaçu, PR, Brasil.

  • Christofoletti, S. R., Batezelli, A., & Moreno, M. M. T. (2015). Caracterização geológica, mineralógica, química e cerâmica da Formação Corumbataí nos municípios de Tambaú, Porto Ferreira e Santa Rosa do Viterbo-SP, visando aplicação e diversificação de produtos no polo cerâmico de Santa Gertrudes. Geociências, 34, 24–33.

    Google Scholar 

  • Costa, M.N.S. (2006). Diagênese e alteração hidrotermal em rochas sedimentares da Formação Corumbataí, Permiano Superior, Mina Granusso, Cordeirópolis/SP. Ph.D. thesis, Universidade Estadual Paulista, Brasil, 140pp.

  • Del Roveri, C., Cunha, R.A., Zanardo, A., Godoy, L.H., Moreno, M.M.T., Rocha, R.R., & Maestrelli, S.C. (2016). chemical-mineralogical and microscopic characterization of clay used as raw materials in Santa Gertrudes ceramic pole. Materials Science Forum, 191–194.

  • Dondi, M., Ercolani, G., Melandri, C., Mingazzini, C., & Marsigli, M. (1999). The chemical composition of porcelain stoneware tiles and its influence on microstructural and mechanical properties. Interceram, 48, 75–83.

    Google Scholar 

  • Dondi, M. (1999). Clay materials for ceramic tiles from the Sassuolo district (northern Apennines, Italy). Geology, composition, and technological properties. Applied Clay Science, 15, 337–366.

    Article  Google Scholar 

  • Dondi, M., Raimondo, M., & Zanelli, C. (2014). Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91–109.

    Article  Google Scholar 

  • Fiori, C. (1996). Raw materials for the Italian stoneware tile industry. Industrial Ceramics, 16, 77–83.

    Google Scholar 

  • Ferrari, S., & Gualtieri, A. F. (2006). The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 73–81.

    Article  Google Scholar 

  • Galos, K. (2011b). Influence of mineralogical composition of applied ball clays on properties of porcelain tiles. Ceramic International, 37, 851–861.

  • Kadır, S., Erman, H., & Erkoyun, H. (2011). Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogene Volcanites, Kütahya (Western Anatolia), Turkey. Clays and Clay Minerals, 59, 250–276.

    Article  Google Scholar 

  • Külah, T., Kadir, S., Gürel, A., Eren, M., & Önalgil, N. (2014). Mineralogy, geochemistry, and genesis of mudstones in the Upper Miocene Mustafapaşa Member of the Ürgüp Formation in the Cappadocia region, central Anatolia, Turkey. Clays and Clay Minerals, 62, 267–285.

    Article  Google Scholar 

  • Landim, P. M. B. (1970). O Grupo Passa Dois (P) na Bacia do rio Corumbataí (SP). Boletim Divisão Geologia e Mineralogia/DNPM, São Paulo, 252, 103.

    Google Scholar 

  • Manju, C.S., Nair, V.N., & Lalithambika., M. (2001). Mineralogy, geochemistry, and utilization study of the Madayi kaolin deposit, north Kerala, India. Clays and Clay Minerals, 49, 355–369.

  • Mezzalira, S. (1964). Grupo Estrada Nova. Boletim do Instituto Geográfico e Geológico, São Paulo, 41, 63–84.

  • Miall, A. D. (1994). Principles of sedimentary basin analysis (p. 490). Springer-Verlag.

  • Montibeller, C. C., Beltran, R. G., Zanardo, A., Ronh, R., Del Roveri, C., Rocha, R. R., & Conceição, F. T. (2020). Geochemistry of siltstones from the Permian Corumbataí Formation from the Paraná Basin (State of São Paulo, Brazil): Insights of provenance, tectonic and climatic settings. Journal of South American Earth Sciences, 102, 102582.

    Article  Google Scholar 

  • Meneghel, E.C. (2021). Caracterização geológica e tecnológica de argilas plásticas em rochas Permianas-Carboníferas da região de Tatuí e Porto Ferreira/SP. Master Dissertation, Universidade Estadual Paulista, Brasil, 111pp.

  • Motta, J. F. M., Christofoletti, S. R., Garcez, L. L., Florêncio, R. V. S., Boschi, A. O., Moreno, M. M. T., & Zanardo, A. (2004). Características do pólo de revestimentos cerâmicos de Santa Gertrudes–SP, com ênfase na produção de argilas. Cerâmica Industrial, 9, 1–6.

    Google Scholar 

  • Motta, J. F. M., Christofoletti, S. R., Garcez, L. L., Florêncio, R. V., Boschi, A. O., Moreno, M. M. T., Del Roveri, C., & Zanardo, A. (2005). Raw materials for ceramic tiles in the Santa Gertrudes Pole, Brazil. Interceram, 56, 263–267.

    Google Scholar 

  • Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 39–49.

  • Orts, M. J., Campos, B., Pico, M., & Gozalbo, A. (1993). Methods of granulometric analysis: Application in the granulometry control of raw materials. Tile Brick International, 9, 143–150.

    Google Scholar 

  • Penanes, P. A., Reguera-Galan, A., Huelga-Suarez, G., Rodríguez-Castrillón, J. Á., Moldovan, M., & Alonso, J. I. G. (2022). Isotopic measurements using ICP-MS: A tutorial review. Journal of Analytical Atomic Spectrometry, 37, 701–726.

    Article  Google Scholar 

  • Perinotto, J.A.J.; & Zaine, M.F. (2008). Patrimônios naturais e história geológica da região de Rio Claro-SP. Arquivo Público e Histórico do Município de Rio Claro, 1, 91pp.

  • Rollinson, H. R. (1995). Using geochemical data: Evaluation, presentation, interpretation (p. 353). Longman Group.

    Google Scholar 

  • Salvador, R. B., & Simone, L. R. L. (2010). Histórico dos estudos sobre a malacofauna fóssil da Formação Corumbataí, Bacia do Paraná, Brasil. Revista Da Biologia, 5, 19–23.

    Article  Google Scholar 

  • Smoot, T. W. (1961). Clay Minerals in the ceramic industries. Clays and Clay Minerals, 10, 309–317.

    Article  Google Scholar 

  • Sousa, S.H.M. (1985). Fácies sedimentares das formações Estrada Nova e Corumbataí no Estado de São Paulo. Master dissertation, Instituto de Geociências, Universidade de São Paulo, Brasil.

  • Souza, P. E. C., Christofoletti, S. R., Moreno, M. M. T., & Corrêa, V. F. (2010). A Formação Corumbataí nos municípios de Tambaú e Limeira - SP: Fonte de matéria-prima para o segmento de porcelanato e semi-grés. Cerâmica Industrial, 15, 30–34.

    Google Scholar 

  • Thiry, M. (1974). Technique de préparation des minéraux argileux en vue de l´analyse aux rayons X. Centre National de la Récherche Scientifique (CNRS), Centre de Sedimentologie et Géochimie de la Surface, Strasbourg, 25 pp.

  • Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal Geology, 30, 377–392.

    Article  Google Scholar 

  • Zalba, P. E. (1979). Clay deposits of Las Aguilas formation, barker, Buenos Aires Province, Argentina. Clays and Clay Minerals, 27, 433–439.

    Article  Google Scholar 

  • Zanardo, A., Montibeller, C. C., Navarro, G. R. B., Moreno, M. M. T., Rocha, R. R., Del Roveri, C., & Azzi, A. A. (2016). Formação Corumbataí na região de Rio Claro/SP: Petrografia e implicações genéticas. Geociências, 35, 322–345.

    Google Scholar 

  • Zanelli, C., Dondi, M., Guarini, G., Raimondo, M., Domínguez, E., Iglesias, C., & Dondi, M. (2008). The geology and mineralogy of a range of kaolins from the Santa Cruz and Chubut provinces, Patagonia (Argentina). Applied Clay Science, 40, 124–142.

    Article  Google Scholar 

  • Zanelli, C., Iglesias, C., Dominguez, E., Gardini, G., Raimondo, M., Guarini, G., & Dondi, M. (2015). Mineralogical composition and particle size distribution as a key to understand the technological properties of Ukrainian ball clays. Applied Clay Science, 108, 102–110.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of FAPESP (São Paulo Research Foundation) Process 2012/24219-9. The second author thanks CNPq for the productivity support (Process 310734/2020-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Ricardo Christofoletti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Associate Editor: Selahattin Kadir.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christofoletti, S.R., Batezelli, A. & Moreno, M.M.T. Facies, Geochemistry, and Ceramic Properties of Corumbataí Formation, Upper Permian of Paraná Basin, and its Application in the Ceramic Industry, Brazil. Clays Clay Miner. 70, 712–732 (2022). https://doi.org/10.1007/s42860-022-00212-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-022-00212-6

Keywords

Navigation