Skip to main content
Log in

Geological, mineralogical and chemical characterization of Devonian kaolinite-bearing sediments for further applications in the ceramic (tiles) industry in La Paz, Bolivia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Clay minerals are widely distributed in Bolivia; among them, illitic clays are most common in the Altiplano where they are mined for use in the ceramic industry that has been growing in the last few years. In addition to illitic sediments, kaolinitic sediments have been recently discovered in sedimentary units in the Bolivian Altiplano. Residual ball clay occurrences in Devonian sedimentary units were studied as part of this work. Geological mapping and geophysical studies (ERT and GPR) were done for better understanding the origin of the deposits and were part of a preliminary study of the mineral potential to define the relationship with the host rock. Chemical and mineralogical techniques such as X-Ray Diffraction, Scanning Electron Microscopy and Inductively Coupled Plasma analyses were performed in samples from the studied area to verify the presence of kaolinite. Atterberg limits and behaviour of the raw material in ceramic specimens supported by chemical analyses show that this material is suitable for manufacturing tile ceramics. This study provides fundamental knowledge for deposit exploitation and future generation of an alternative source of employment for the inhabitants of Micaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agnello VN (2005) The kaolin industry in the Republic of South Africa. Office of Minerals and Energy of the Republic of South Africa, South Africa

    Google Scholar 

  • ASTM C326-09 (2009) Standard test method for drying and firing shrinkages of ceramic whiteware clays. ASTM International, West Conshohocken. http://www.astm.org. doi:10.1520/C0326-09

  • ASTM D4318-10e1 (2010) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken. http://www.astm.org. doi:10.1520/D4318

  • ASTM C373-14 (2014) Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products, ceramic tiles, and glass tiles. ASTM International, West Conshohocken. http://www.astm.org. doi:10.1520/C0373

  • Ayala R (2013) Estudio geofísico del área de Micaya, municipio de Colquencha. Departamento de La Paz mediante Tomografías geoelectricas, Edu GEO Riesgos consultant

    Google Scholar 

  • Ayala R (2015) Estudio geofísico del área de Micaya, municipio de Colquencha. Departamento de La Paz mediante Georadar, Edu GEO Riesgos consultant

    Google Scholar 

  • Bain JA (1971) A plasticity chart as an aid to the identification and assessment of industrial clays. Clays Miner 9(1):1–17

    Article  Google Scholar 

  • Blanco M, Luna I, Conde J, Crespo P, Palenque E, Cabrera S (2005) Aplicacion de recursos naturales arcillosos de la localidad de Micaya en la obtencion de productos ceramicos. Final Proceedings of the Bolivian Conference on Geology, Sucre, pp 103–107

    Google Scholar 

  • Brown G, Brindley GW (1980) X-ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Miner Soc Monogr 5:305–359

  • Burley AJ, Cornwell JD, Tombs JMC (1978) Geophysical field techniques mineral exploration. In: Crown (ed) Mineral reconnaissance reports. Report 2, pp 1–27

  • Busby JP, Cuss RJ, Raines MG, Beamish D (2004) Application of ground penetrating radar to geological investigations. In: British Geological Survey (ed) Internal reports. Report IR/04/21, pp 1–42

  • Casagrande A (1932) Research on the Atterberg limits of soils. Public Roads 12:3 (pp 121–30, 136)

  • Chart Munsell (2009) Geological rock—color chart. Munsell Colour Press, Miami

    Google Scholar 

  • De Oliveira AC, Malagutti W, Dourado J (2006) Resistivity (DC) method applied to aquifer protection studies. Rev Bras Geofís 24(4):573–581

    Google Scholar 

  • El Assel N, Kchikach A, Teixidó T, Peña JA, Jaffal M, Guerin R, Lutz P, Jourani E, Amaghzaz M (2011) A ground penetrating radar and electrical resistivity tomography prospection for detecting sterile bodies in the phosphatic bearing of Sidi Chennane (Morocco). Int J Gesci 2:406–413

    Article  Google Scholar 

  • El-Qady G, Hafez M, Abdalla AM, Ushijima K (2005) Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. J Cave Karst Stud 67(3):174–181

    Google Scholar 

  • Escobar DA, Bellot J, Jurado AE (1999) Minerales y rocas industriales. In: Riera KC, Troëng B, Diaz ME, Jurado AE (eds) Integrated studies of the mineral resources of Bolivia. La Paz and Copacabana geological sheet. Geological Survey of Bolivia. Bulletin 22:47–74

  • GEOBOL (1995) Carta Geológica Calamarca No. 5943. Escala 1:100000, Servicio Geológico de Bolivia (GEOBOL) and Geological Swedish AB (eds)

  • IBNORCA (2014) Catálogo de Normas Bolivianas. NB/ISO 10545-4:2005 Baldosas cerámicas—Determinación de la resistencia a la flexión y de la carga de rotura (correspondiente a la norma ISO 10545-4:1995)

  • ISO 10545-4:2014 (2014) Ceramic tiles—part 4. Determination of modulus of rupture and breaking strength. ICS:91.100.23

  • Jacob RE, Mitha VR, Macpherson D (2004) The kaolinitic clay deposits on Beaconsfield, north of Grahamstown. S Afr J Sci 100:560–564

    Google Scholar 

  • János F (2009) Mineral exploration. Development of basic earth science specialization—TÁMOP, report 4.1.2-08/1/A-2009-0033

  • Keller WD (1982) Kaolin—a most diverse rock in genesis, texture, physical properties, and uses. Geol Soc Am Bull 93:27–36

    Article  Google Scholar 

  • Keller WD (1985) The nascence of clay minerals. Clays Clay Miner 33:161–172

    Article  Google Scholar 

  • Kumar D (2012) Efficacy of electrical resistivity tomography technique in mapping shallow surface anomaly. J Geol Soc India 80:304–307

    Article  Google Scholar 

  • Manju CS, Narayanan Nair V, Lalithambika M (2001) Mineralogy, geochemistry and utilization: study of the Madayi kaolin deposit, North Kerala, India. Clays Clay Miner 49(4):355–369

    Article  Google Scholar 

  • Martinez C, Vargas E (1990) Sobre Las Deformaciones Sin-Sedimentarias Mesozoicas De La Región De Macha–Pocoata–Colquechaca, Norte De Potosí Cordillera Oriental De Bolivia. Rev Técnica YPFB 11:13–20

    Google Scholar 

  • McCuistion J, Wilson I (2006) Industrial minerals & rocks. In: Kogel J, Trivedi N, Barker J, Krukowski S (eds) Ball clays. Society for Mining, and Exploration Inc, pp 343–356

  • Mooney JF (1996) Industrial minerals and their uses: a handbook & formulary. Noyes Publication, New Jersey, pp 467–481

    Google Scholar 

  • Moore D, Reynolds R (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford 371 p

    Google Scholar 

  • Murray HH (1988) Kaolin minerals: their genesis and occurrences. In: Bailey SW (ed) Reviews in mineralogy, hydrous phyllosilicates. Mineralogical Society of America Publication no. 19

  • Murray HH, Keller DW (1993) Kaolins, kaolins and kaolins; In Kaolin genesis and utilization. Special publication no. 1. The Clay Minerals Society, pp 1–24

  • Murray HH, Smith JM (1973) The geology and mineralogy of the Grahamstown, South Africa kaolin deposit. In: Programs and abstracts, 22nd annual clays minerals conference, Clay Minerals Society

  • Orris JG, Asher-Bolider S, Soria EE, Enriquez RR, Bailey AE (1992) Laguna colorada. In: Cox PD, Carrasco R, Andre RO, Hinojosa VA, Long RL (eds) Cooper deposits in sedimentary rocks. United States Government Press office, pp 201–202

  • Panek T, Hradecky J, Silhan K (2006) Application of electrical resistivity tomography (ERT) in the study of various types of slope deformations in anisotropic bedrock: case studies from Flysch Carpathians. Stud Geomorphol Carpatho Balc, XLII, pp 57–73

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279

    Google Scholar 

  • Redwood D (1986) Epithermal precious and base metal mineralization and related magmatism of the Northern Altiplano, Bolivia. Ph.D. thesis, University of Aberdeen

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71

    Article  Google Scholar 

  • Sanfeliu T, Jordan MM (2009) Geological and environmental management of ceramic clay quarries: a review. Environ Geol 57:1613–1618

    Article  Google Scholar 

  • Sanner B, Abbas MA (1998) How can geophysical exploration help to determine GSHP ground properties?. The second Stockton international geothermal conference, New Jersey, p 10

    Google Scholar 

  • Soria Flores A (1980) Estudio hidrogeológico del area Viacha, Surusaya y Villa Remedios. Tesis de Grado, Universidad Mayor de San Andrés, La Paz

    Google Scholar 

  • Stoch L, Sikora W (1976) Transformation of mica in the process of kaolinization of granites and gneisses. Clays Clay Miner 24:156–162

    Article  Google Scholar 

  • Virta LR (2012) Clays. In: U.S. Geological Survey (ed) Mineral commodity summaries, USGS, Virginia, pp 44–45

  • Watson K, Fitterman D, Saltus RW, McCafferty A, Swayze G, Church S, Smith K, Goldhaber M, Robson S, McMahon P (2001) Application of geophysical techniques to minerals-related environmental problems. In: U.S. Geological Survey (ed) Open file report 01-458, USGS

  • Zeballos A, Blanco M, Machaca V (2009) Caracterización mineralógica y fisicoquímica de una lutita blanca de la Localidad de Micaya, La Paz. Final proceedings of the Bolivian conference of geology, Potosi, pp 102–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariana Zeballos.

Appendices

Appendix 1

See Tables 1 and 2.

Appendix 2

See Tables 3 and 4.

Table 4 Physical properties determined for kiln-fired Vila Vila samples

Appendix 3

See Tables 5 and 6.

Table 5 Initial and final UTM coordinates of the geophysical lines
Table 6 Initial and final UTM coordinates of the geophysical lines

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeballos, A., Weihed, P., Blanco, M. et al. Geological, mineralogical and chemical characterization of Devonian kaolinite-bearing sediments for further applications in the ceramic (tiles) industry in La Paz, Bolivia. Environ Earth Sci 75, 546 (2016). https://doi.org/10.1007/s12665-015-5212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5212-y

Keywords

Navigation