Skip to main content
Log in

ORGANO-MODIFICATION OF MONTMORILLONITE

  • Published:
Clays and Clay Minerals

Abstract

Modification of the surfaces of montmorillonite (Mnt) by organic molecules is an effective method for improving their affinity toward non-aqueous substances, and has resulted in extensive industrial applications as rheological control agents, drilling fluids, and other functional materials used in applications ranging from environmental remediation to coatings. The present study reviewed recent progress in organo-modification of Mnt, and provides state-of-the-art insights into proposed modification mechanisms and the peculiar functionalities of the resulting organo-montmorillonite (OMnt). Several routes have been employed to modify Mnt, including ion exchange with organic ions, surface adsorption, and grafting of organics. Commonly used organic modifiers include cationic, anionic, zwitterionic, non-ionic, and polymeric species. Organo-modification is driven by multiple interactions: van der Waals forces, cation exchange, electrostatic interaction, hydrogen bonds, and ion–dipole interaction. OMnt, in general, exhibits synergistic and/or antagonistic effects when used in oil-based drilling fluids, environmental remediation, or layered silicate/polymer nanocomposites. The detailed mechanisms of non-ionic and zwitterionic modification of Mnt remain unclear. This literature survey suggests that future work should emphasize deeper understanding of interactions between the Mnt and the organic modifiers, and meanwhile expand the applications of OMnt into catalysis, drug carriers, and the biomedical field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  • Acisli, O., Karaca, S., & Gurses, A. (2017). Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (mt) from aqueous solutions. Applied Clay Science, 142, 90–99.

    Article  Google Scholar 

  • Ahmed, A., Chaker, Y., Belarbi, E. H., Abbas, O., Chotard, J. N., Abassi, H. B., Van Nhien, A. N., El Hadri, M., & Bresson, S. (2018). XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids. Journal of Molecular Structure, 1173, 653–664.

    Article  Google Scholar 

  • Akbulut, S., Kurt, Z. N., & Arasan, S. (2012). Surfactant modified clays' consistency limits and contact angles. Earth Sciences Research Journal, 16, 95–101.

    Google Scholar 

  • Akbulut, S., Kurt, Z. N., Arasan, S., & Pekdemir, Y. (2013). Geotechnical properties of some organoclays. Sadhana, 38, 317–329.

    Google Scholar 

  • Al-Mulla, J., Al-Mosawy, E. A., Abd-Almutalib, M. G., & Mohamad, M. J. (2017). New biopolymer nanocomposites-based epoxidized palm oil/polybutylene succinate modified clay: Preparation and characterization. Rendiconti Lincei, 28, 721–730.

    Article  Google Scholar 

  • Ambre, A., Katti, K. S., & Katti, D. R. (2011). In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterials. Materials Science and Engineering C, 31, 1017–1029.

    Article  Google Scholar 

  • Bagherifam, S., Komarneni, S., Lakzian, A., Fotovat, A., Khorasani, R., Huang, W. Y., Ma, J. F., Hong, S. Q., Cannon, F. S., & Wang, Y. J. (2014). Highly selective removal of nitrate and perchlorate by organoclay. Applied Clay Science, 95, 126–132.

    Article  Google Scholar 

  • Bajda, T., & Klapyta, Z. (2013). Adsorption of chromate from aqueous solutions by hdtma-modified clinoptilolite, glauconite and montmorillonite. Applied Clay Science, 86, 169–173.

    Article  Google Scholar 

  • Balme, S., Guegan, R., Janot, J. M., Jaber, M., Lepoitevin, M., Dejardin, P., Bourrat, X., & Motelica-Heino, M. (2013). Structure, orientation and stability of lysozyme confined in layered materials. Soft Matter, 9, 3188–3196.

    Article  Google Scholar 

  • Bate, B., & Burns, S. E. (2010). Effect of total organic carbon content and structure on the electrokinetic behavior of organoclay suspensions. Journal of Colloid and Interface Science, 343, 58–64.

    Article  Google Scholar 

  • Bee, S. L., Abdullah, M. A. A., Bee, S. T., Sin, L. T., & Rahmat, A. R. (2018). Polymer nanocomposites based on silylated-montmorillonite: A review. Progress in Polymer Science, 85, 57–82.

    Article  Google Scholar 

  • Bertuoli, P. T., Piazza, D., Scienza, L. C., & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 46–51.

    Article  Google Scholar 

  • Borrego-Sánchez, A., Gómez-Pantoja, E., Morillo, E., Undabeytia, T., & Sainz-Díaz, C. I. (2018). Adsorption of the tallow amine ethoxylate surfactant Ethomeen t/15 on montmorillonite. Applied Clay Science, 161, 533–543.

    Article  Google Scholar 

  • Brantseva, T., Antonov, S., Kostyuk, A., Ignatenko, V., Smirnova, N., Korolev, Y., Tereshin, A., & Ilyin, S. (2016). Rheological and adhesive properties of PIB-based pressure-sensitive adhesives with montmorillonite-type nanofillers. European Polymer Journal, 76, 228–244.

    Article  Google Scholar 

  • Brigatti, M.F., Galan, E., & Theng, B.K.G. (2006). Structures and mineralogy of clay minerals. Pp. 19–86 in: Handbook of Clay Science (F. Bergaya & G. Lagaly, editors). Developments in Clay Science, 1, Elsevier, Amsterdam.

  • Bruce, A. N., Lieber, D., Hua, I., & Howarter, J. A. (2014). Rational interface design of epoxy–organoclay nanocomposites: Role of structure-property relationship for silane modifiers. Journal of Colloid and Interface Science, 419, 73–78.

    Article  Google Scholar 

  • Bujdak, J. (2015). Effect of layer charge on the formation of polymer/layered silicate nanocomposites: Intercalation of polystyrene. Journal of Physical Chemistry C, 119, 12016–12022.

    Article  Google Scholar 

  • Cao, H. L., Wang, P., & Li, Y. (2010). Preparation of poly(lactic acid)/Na-montmorillonite nanocomposite by microwave-assisted in-situ melt polycondensation. Macromolecular Research, 18, 1129–1132.

  • Cao, X. S., Wang, J., Liu, M., Chen, Y., Cao, Y., & Yu, X. L. (2015). Chitosan-collagen organomontmorillonite scaffold for bone tissue engineering. Frontiers of Materials Science, 9, 405–412.

  • Cardoso, M. A. F., Ferreira, H. S., da Silva, I. A., Ferreira, H. C., & Neves, G. D. (2012). Development of organoclays for use in oil-based drilling fluids. Materials Science Forum, 727–728, 1557–1562.

    Article  Google Scholar 

  • Chen, D. M., Chen, J., Luan, X. L., Ji, H. P., & Xia, Z. G. (2011). Characterization of anion–cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chemical Engineering Journal, 171, 1150–1158.

  • Daitx, T. S., Carli, L. N., Crespo, J. S., & Mauler, R. S. (2015). Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of phbv. Applied Clay Science, 115, 157–164.

    Article  Google Scholar 

  • Demir, B., Seleci, M., Ag, D., Cevik, S., & Timur, S. (2013). Amine intercalated clay surfaces for microbial cell immobilization and biosensing applications. RSC Advances, 3(20), 7513–7519.

    Article  Google Scholar 

  • Demir, F., Demir, B., Yalcinkaya, E. E., Cevik, S., Demirkol, D. O., Anik, U., & Timur, S. (2014). Amino acid intercalated montmorillonite: electrochemical biosensing applications. RSC Advances, 4, 50107–50113.

    Article  Google Scholar 

  • Deng, Y., Dixon, J. B., White, G. N., Loeppert, R. H., & Juo, A. S. R. (2006). Bonding between polyacrylamide and smectite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 82–91.

    Article  Google Scholar 

  • dos Santos, E. C., Gates, W. P., Michels, L., Juranyi, F., Mikkelsen, A., da Silva, G. J., Fossum, J. O., & Bodallo, H. N. (2018). The pH influence on the intercalation of the bioactive agent ciprofloxacin in fluorohectorite. Applied Clay Science, 166, 288–298.

    Article  Google Scholar 

  • El Adraa, K., Georgelin, T., Lambert, J. F., Jaber, F., Tielens, F., & Jaber, M. (2017). Cysteine-montmorillonite composites for heavy metal cation complexation: A combined experimental and theoretical study. Chemical Engineering Journal, 314, 406–417.

    Article  Google Scholar 

  • Eyama, T., Yogo, Y., Fujimura, T., Tsukamoto, T., Masui, D., Shimada, T., Tachibana, H., Inoue, H., & Takagi, S. (2012). Adsorption and stacking behaviour of zwitterionic porphyrin on the clay surface. Clay Minerals, 47, 243–250.

    Article  Google Scholar 

  • Ezquerro, C.S., Ric, G.I., Miñana, C.C., & Bermejo, J.S. (2015). Characterization of montmorillonites modified with organic divalent phosphonium cations. Applied Clay Science, 111, 1–9.

  • Fan, J. T., Zhu, H., Li, R., & Chen, N. J. (2015). Montmorillonite modified by cationic and nonionic surfactants as high-performance fluid-loss-control additive in oil-based drilling fluids. Journal of Dispersion Science and Technology, 36, 569–576.

    Article  Google Scholar 

  • Fehervari, A., Gates, W. P., Patti, A. F., Turney, T. W., Bouazza, A., & Rowe, R. K. (2016a). Cyclic organic carbonate modification of sodium bentonite for enhanced containment of hyper saline leachates. Geotextiles and Geomembranes, 134, 2–12.

    Google Scholar 

  • Fehervari, A., Gates, W. P., Patti, A. F., Turney, T. W., Bouazza, A., & Rowe, R. K. (2016b). Potential hydraulic barrier performance of cyclic organic carbonate modified bentonite complexes against hyper-salinity. Geotextiles and Geomembranes, 44, 748–760.

    Article  Google Scholar 

  • Flores, F. M., Undabeytia, T., Morillo, E., & Torres Sanchez, R. M. (2017). Technological applications of organo-montmorillonites in the removal of pyrimethanil from water: Adsorption/desorption and flocculation studies. Environmental Science Pollution Research International, 24, 14463–14476.

    Article  Google Scholar 

  • Fu, M., Zhang, Z., Wu, L., Zhuang, G., Zhang, S., Yuan, J., & Liao, L. (2016). Investigation on the co-modification process of montmorillonite by anionic and cationic surfactants. Applied Clay Science, 132–133, 694–701.

    Article  Google Scholar 

  • Gardi, I., & Mishael, Y. G. (2018). Designing a regenerable stimuli-responsive grafted polymer-clay sorbent for filtration of water pollutants. Science and Technology of Advanced Materials, 19, 588–598.

    Article  Google Scholar 

  • Ghafar, H. H. A., Radwan, E. K., & El-Wakee, S. T. (2020). Removal of hazardous contaminants from water by natural and zwitterionic surfactant-modified clay. ACS Omega, 5, 6834–6845.

    Article  Google Scholar 

  • Gates, W. P., Shaheen, U., Turney, T. W., & Patti, A. F. (2016). Cyclic carbonate – sodium smectite intercalates. Applied Clay Science, 124–125, 94–101.

    Article  Google Scholar 

  • Gu, Z., Gao, M., Luo, Z., Lu, L., Ye, Y., & Liu, Y. (2014). Bis-pyridinium dibromides modified organo-bentonite for the removal of aniline from wastewater: A positive role of π–π polar interaction. Applied Surface Science, 290, 107–115.

    Article  Google Scholar 

  • Gu, Z., Gao, M., Lu, L., Liu, Y., & Yang, S. (2015). Montmorillonite functionalized with zwitterionic surfactant as a highly efficient adsorbent for herbicides. Industrial & Engineering Chemistry Research, 54, 4947–4955.

    Article  Google Scholar 

  • Guégan, R., Giovanela, M., Warmont, F., & Motelica-Heino, M. (2015). Nonionic organoclay: A 'Swiss army knife' for the adsorption of organic micro-pollutants? Journal of Colloid and Interface Science, 437, 71–79.

    Article  Google Scholar 

  • Guégan, R., Oliveira, T. D., Gleuher, J. L., & Sugahara, Y. (2019). Tuning down the environmental interests of organoclays for emerging pollutants: pharmaceuticals in presence of electrolytes. Chemosphere, 239, 124730.

    Article  Google Scholar 

  • Hassani, A., Khataee, A., Karaca, S., & Shirzad-Siboni, M. (2015). Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: Kinetic and isotherm studies. Environmental Technology, 36, 3125–3135.

    Article  Google Scholar 

  • He, H. P., Ma, Y. H., Zhu, J. X., Yuan, P., & Qing, Y. H. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 67–72.

  • Hojiyev, R., Ulcay, Y., & Celik, M. S. (2017a). Development of a clay-polymer compatibility approach for nanocomposite applications. Applied Clay Science, 146, 548–556.

    Article  Google Scholar 

  • Hojiyev, R., Ulcay, Y., Celik, M. S., & Carty, W. M. (2017b). Effect of CEC coverage of hexadecyltributylphosphonium modified montmorillonite on polymer compatibility. Applied Clay Science, 141, 204–211.

    Article  Google Scholar 

  • Hou, Y. K., Wu, P. X., Huang, Z. J., Ruan, B., Liu, P. Y., & Zhu, N. W. (2014). Successful intercalation of DNA into CTAB-modified clay minerals for gene protection. Journal of Materials Science, 49, 7273–7281.

  • Hu, X., Tian, S., Zhan, S., & Zhu, J. (2017). Adsorption of switchable surfactant mixed with common nonionic surfactant on montmorillonite: Mechanisms and arrangement models. Applied Clay Science, 146, 140–146.

    Article  Google Scholar 

  • Jovic-Jovicic, N., Milutinovic-Nikolic, A., Bankovic, P., Mojovic, Z., Zunic, M., Grzetic, I., & Jovanovic, D. (2010). Organo-inorganic bentonite for simultaneous adsorption of acid orange 10 and lead ions. Applied Clay Science, 47, 452–456.

    Article  Google Scholar 

  • Kessenich, B. L., Pokhrel, N., Kibue, J. K., Flury, M., & Yoreo, J. J. D. (2020). Negatively charged lipids exhibit negligible effects on the water repellency of montmorillonite films. ACS Omega, 2020(5), 12154–12161.

    Article  Google Scholar 

  • Kohno, Y., Inagawa, M., Ikoma, S., Shibata, M., Matsushima, R., Fukuhara, C., Tomita, Y., Maeda, Y., & Kobayashi, K. (2011). Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Applied Clay Science, 54, 202–205.

    Article  Google Scholar 

  • Lagaly, G., Ogawa, M., & Dékány, I. (2013). Clay mineral organic interactions. Pp. 309–377 in: Handbook of Clay Science (F. Bergaya & G. Lagaly, editors) Developments in Clay Science, 5. Elsevier, Amsterdam.

  • Lazorenko, G., Kasprzhitskii, A., & Yavna, V. (2018). Synthesis and structural characterization of betaine- and imidazoline-based organoclays. Chemical Physics Letters, 692, 264–270.

    Article  Google Scholar 

  • Liang, J. J., Wei, J. C., Lee, Y. L., Hsu, S. H., Lin, J. J., & Lin, Y. L. (2014). Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. Journal of Virology, 88, 4218–4228.

    Article  Google Scholar 

  • Liu, Y., Gates, W. P., & Bouazza, A. (2013). Acid induced degradation of the bentonite component used in geosynthetic clay liners. Geotextiles and Geomembranes, 36, 71–80.

    Article  Google Scholar 

  • Liu, C. M., Wu, P. X., Zhu, Y. J., & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, 1026–1032.

  • Luo, W., Ouyang, J., Antwi, P., Wu, M., Huang, Z., & Qin, W. (2019). Microwave/ultrasound-assisted mo4dification of montmorillonite by conventional and gemini alkyl quaternary ammonium salts for adsorption of chromate and phenol: Structure-function relationship. The Science of the Total Environment, 655, 1104–1112.

    Article  Google Scholar 

  • Ma, L. Y., Zhu, J. X., He, H. P., Xi, Y. F., Zhu, R. L., Tao, Q., & Liu, D. (2015). Thermal analysis evidence for the location of zwitterionic surfactant on clay minerals. Applied Clay Science, 112, 62–67.

    Article  Google Scholar 

  • Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q., & Ayoko, G. A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, 880–888.

    Article  Google Scholar 

  • Martinez-Costa, J. I., & Leyva-Ramos, R. (2017). Effect of surfactant loading and type upon the sorption capacity of organobentonite towards pyrogallol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 676–685.

    Article  Google Scholar 

  • Mauro, N., Chiellini, F., Bartoli, C., Gazzarri, M., Laus, M., Antonioli, D., Griffiths, P., Manfredi, A., Ranucci, E., & Ferruti, P. (2017). Rgd-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 11, 2164–2175.

    Article  Google Scholar 

  • Michot, L. J., Bihannic, I., Thomas, F., Lartiges, B. S., Waldvogel, Y. C. C., Thieme, J., Funari, S. S., & Levitz, P. (2013). Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study. Langmuir, 29, 3500–3510.

    Article  Google Scholar 

  • Naranjo, P. M., Sham, E. L., & Torres, E. M. F. (2017). Characterization of hexadecyltrimethylammonium-organoclay and its individual components by thermal techniques. Bulletin of Materials Science, 40, 753–758.

    Article  Google Scholar 

  • Ouellet-Plamondon, C. M., Stasiak, J., & Al-Tabbaa, A. (2014). The effect of cationic, non-ionic and amphiphilic surfactants on the intercalation of bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 330–337.

    Article  Google Scholar 

  • Papatzani, S., & Paine, K. (2017). Inorganic and organomodified nanomontmorillonite dispersions for use as supplementary cementitious materials – a novel theory based on nanostructural studies. Nanocomposites, 3, 2–19.

    Article  Google Scholar 

  • Parolo, M. E., Pettinari, G. R., Musso, T. B., Sánchez-Izquierdo, M. P., & Fernández, L. G. (2014). Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance. Applied Surface Science, 320, 356–363.

    Article  Google Scholar 

  • Peng, S. Y., Mao, T. Y., Zheng, C., Wu, X., Wei, Y., Zeng, Z. W., Xiao, R. H., & Sun, Y. (2019). Polyhydroxyl gemini surfactant-modified montmorillonite for efficient removal of methyl orange. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 578, 123602.

    Google Scholar 

  • Piscitelli, F., Posocco, P., Toth, R., Fermeglia, M., Pricl, S., Mensitieri, G., & Lavorgna, M. (2010). Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length. Journal of Colloid and Interface Science, 351, 108–115.

    Article  Google Scholar 

  • Qi, L. Y., Fang, Y., Wang, Z. Y., Ma, N., Jiang, L. Y., & Wang, Y. Y. (2008). Synthesis and physicochemical investigation of long alkylchain betaine zwitterionic surfactant. Journal of Surfactants and Detergents, 11, 55–59.

    Article  Google Scholar 

  • Qin, S., Hu, S., Luo, Z., Yu, J., & Xue, B. (2011). Effect of preparation processes on morphology and mechanical properties of nano-organ-montmorillonite/polyamide-6-polypropylene composites. Acta Materiae Compositae Sinica, 28, 14–22.

    Google Scholar 

  • Qin, C., Troya, D., Shang, C., Hildreth, S., Helm, R., & Xia, K. (2014). Surface catalyzed oxidative oligomerization of 17β-estradiol by Fe3+-saturated montmorillonite. Environmental Science and Technology, 49, 956–964.

    Article  Google Scholar 

  • Riaz, U., Ashraf, S. M., & Khan, N. (2011). Effects of surfactants on microwave-assisted solid-state intercalation of poly(carbazole) in bentonite. Journal of Nanoparticle Research, 13, 6321–6331.

    Article  Google Scholar 

  • Sarier, N., Onder, E., & Ersoy, S. (2010). The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 371, 40–49.

    Google Scholar 

  • Scarfato, P., Incarnato, L., Di Maio, L., Dittrich, B., & Schartel, B. (2016). Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites. Composites Part B – Engineering, 98, 444–452.

    Article  Google Scholar 

  • Sehgal, P., Kosaka, O., Doe, H., & Otzen, D. E. (2009). Interaction and stability of mixed micelle and monolayer of nonionic and cationic surfactant mixtures. Journal of Dispersion Science and Technology, 30, 1050–1058.

    Article  Google Scholar 

  • Seleci, M., Ag, D., Yalcinkaya, E. E., Demirkol, D. O., Guler, C., & Timur, S. (2012). Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications. RSC Advances, 2, 2112–2118.

    Article  Google Scholar 

  • Sepehri, S., Rafizadeh, M., Hemmati, M., & Bouhendi, H. (2014). Study of the modification of montmorillonite with monofunctional and trifunctional vinyl chlorosilane. Applied Clay Science, 97–98, 235–240.

    Article  Google Scholar 

  • Shaheen, U., Turney, T. W., Saito, K., Gates, W. P., & Patti, A. F. (2016). Pendant cyclic carbonate-polynmer/Na-smectite nanocomposites via in situ intercalative polymerization and solution intercalation. Journal of Polymer Science, Part A: Polymer Chemistry, 4, 2421–2429.

    Article  Google Scholar 

  • Shen, W., He, H., Zhu, J., Yuan, P., & Frost, R. L. (2007). Grafting of montmorillonite with different functional silanes via two different reaction systems. Journal of Colloid and Interface Science, 313, 268–273.

    Article  Google Scholar 

  • Shumyantseva, V. V., Bulko, T. V., Rudakov, Y. O., Kuznetsova, G. P., Samenkova, N. F., Lisitsa, A. V., Karuzina, I. I., & Archakov, A. I. (2007). Electrochemical properties of cytochroms P450 using nanostructured electrodes: direct electron transfer and electro catalysis. Journal of Inorganic Biochemistry, 101, 859–865.

    Article  Google Scholar 

  • Silva, A. A., Dahmouche, K., & Soares, B. G. (2011). Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Applied Clay Science, 54, 151–158.

    Article  Google Scholar 

  • Silva, I. A., Sousa, F. K. A., Menezes, R. R., Neves, G. A., Santana, L. N. L., & Ferreira, H. C. (2014). Modification of bentonites with nonionic surfactants for use in organic-based drilling fluids. Applied Clay Science, 95, 371–377.

    Article  Google Scholar 

  • Silva, R. D., Stefanichen Monteiro, I., Chaparro, T. C., Silva Hardt, R., Giudici, R., Barros-Timmons, A., Bourgeat-Lami, E., & Martins Dos Santos, A. (2017). Investigation of the adsorption of amphipathic macroraft agents onto montmorillonite clay. Langmuir, 33, 9598–9608.

    Article  Google Scholar 

  • Soares, B. G., Ferreira, S. C., & Livi, S. (2016). Modification of anionic and cationic clays by zwitterionic imidazolium ionic liquid and their effect on the epoxy-based nanocomposites. Applied Clay Science, 135, 347–354.

    Article  Google Scholar 

  • Songurtekin, D., Yalcinkaya, E. E., Ag, D., Seleci, M., Demirkol, D. O., & Timur, S. (2013). Histidine modified montmorillonite: laccase immobilization and application to flow injection analysis of phenols. Applied Clay Science, 86, 64–69.

    Article  Google Scholar 

  • Sun, Z., Park, Y., Zheng, S., Ayoko, G. A., & Frost, R. L. (2013). XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide. Journal of Colloid and Interface Science, 408, 75–81.

    Article  Google Scholar 

  • Sun, J. L., Zhuang, G. Z., Wu, S. Q., & Zhang, Z. P. (2016). Structure and performance of anionic–cationic-organo-montmorillonite in different organic solvents. RSC Advances, 6, 54747–54753.

  • Taylor-Lange, S. C., Rajabali, F., Holsomback, N. A., Riding, K., & Juenger, M. C. G. (2014). The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials. Cement and Concrete Composites, 53, 127–135.

    Article  Google Scholar 

  • Theng, B. K. G. (Ed.) (2012). Formation and Properties of Clay-Polymer Complexes. Developments in Clay Science, Volume 4. Amsterdam: Elsevier.

  • Thue, P. S., Sophia, A. C., Lima, E. C., Wamba, A. G. N., de Alencar, W. S., dos Reis, G. S., Rodembusch, F. S., & Dias, S. L. P. (2018). Synthesis and characterization of a novel organic-inorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25 from aqueous solutions. Journal of Cleaner Production, 171, 30–44.

  • Tunç, S., Duman, O., & Kancı, B. (2012). Rheological measurements of Na-bentonite and sepiolite particles in the presence of tetradecyltrimethylammonium bromide, sodium tetradecyl sulfonate and Brij 30 surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398, 37–47.

    Article  Google Scholar 

  • Unal, B., Yalcinkaya, E. E., Demirkol, D. O., & Timur, S. (2018). An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-montmorillonite. Applied Surface Science, 444, 542–551.

    Article  Google Scholar 

  • Varadwaj, G. B. B., Parida, K., & Nyamori, V. O. (2016). Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: A brief overview. Inorganic Chemistry Frontiers, 3, 1100–1111.

    Article  Google Scholar 

  • Wallis, P. J., Gates, W. P., Patti, A. F., Scot, J. L., & Teoh, E. (2007). Assessing and improving the catalytic activity of K-10 montmorillonite. Green Chemistry Letters and Reviews, 9, 980–986.

    Google Scholar 

  • Wallis, P. J., Chaffee, A. L., Gates, W. P., Patti, A. F., & Scott, J. L. (2010). Partial exchange of Fe(III) montmorillonite with hexadecyltrimethylammonium cation increases catalytic activity for hydrophobic substrates. Langmuir, 26, 4258–4265.

    Article  Google Scholar 

  • Wallis, P. J., Gates, W. P., Patti, A. F., & Scott, J. L. (2011). Catalytic activity of choline modified Fe(III) montmorillonite. Applied Clay Science, 53, 336–340.

    Article  Google Scholar 

  • Wang, Y. F., Song, Z. B., Chen, C. X., & Peng, J. S. (2010). Pictet-spengler condensation reactions catalyzed by a recyclable H+-montmorillonite as a heterogeneous Brønsted acid. Science China Chemistry, 53, 562–568.

    Article  Google Scholar 

  • Wang, X. S., Ma, H. B., Li, G. B., He, J. B., & Na, P. (2014). Removal of pesticides by organic montmorillonite composites. Advanced Materials Research, 875–877, 262–266.

    Google Scholar 

  • Wang, X. L., Liu, B. L., & Yu, P. Z. (2015). Research on the preparation and mechanism of the organic montmorillonite and its application in drilling fluid. Journal of Nanomaterials.

  • Wang, G. F., Wang, S., Sun, Z. M., Zheng, S. L., & Xi, Y. F. (2017a). Structures of nonionic surfactant modified montmorillonites and their enhanced adsorption capacities towards a cationic organic dye. Applied Clay Science, 148, 1–10.

    Article  Google Scholar 

  • Wang, G. F., Zhang, S., Hua, Y. Y., Su, X., Ma, S. J., Wang, J., Tao, Q., Wang, Y. J., & Komarneni, S. (2017b). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, 1–9.

  • Wang, G. F., Lian, C., Xi, Y. F., Sun, Z. M., & Zheng, S. L. (2018). Evaluation of nonionic surfactant modified montmorillonite as mycotoxins adsorbent for aflatoxin B1 and zearalenone. Journal of Colloid and Interface Science, 518, 48–56.

    Article  Google Scholar 

  • Wang, G. F., Xi, Y. F., Lian, C., Sun, Z. M., & Zheng, S. L. (2019). Simultaneous detoxification of polar aflatoxin b-1 and weak polar zearalenone from simulated gastrointestinal tract by zwitterionic montmorillonites. Journal of Hazardous Materials, 364, 227–237.

    Article  Google Scholar 

  • Wei, G., Li, Y., Zhang, L., Cai, S., Zhu, T., Li, Z., & Mo, J. H. (2018). Synthesis of bentonite-supported Fe(II) and heteropolyacid (HPW) composite through a mechanochemical processing. Applied Clay Science, 152, 342–351.

    Article  Google Scholar 

  • Wicklein, B., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2010). Bio-organoclays based on phospholipids as immobilization hosts for biological species. Langmuir, 26, 5217–5225.

    Article  Google Scholar 

  • Wu, P. X., Dai, Y. P., Long, H., Zhu, N. W., Li, P., Wu, J. H., & Dang, Z. (2012). Characterization of organo-montmorillonites and comparison for Sr(II) removal: Equilibrium and kinetic studies. Chemical Engineering Journal, 191, 288–296.

  • Wu, L. M., Yang, C. X., Mei, L F.., Qin, F. X., Liao, L. B., & Lv, G. C. (2014a). Microstructure of different chain length ionic liquids intercalated into montmorillonite: A molecular dynamics study. Applied Clay Science, 99, 266–274.

  • Wu, S. Q., Zhang, Z. P., Wang, Y. H., Liao, L. B., & Zhang, J. S. (2014b). Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites. Materials Research Bulletin, 59, 59–64.

  • Xi, Y. F., Mallavarapu, M., & Naidu, R. (2010). Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Applied Clay Science, 48, 92–96.

    Article  Google Scholar 

  • Yan, H. Q., Chen, X. Q., Feng, Y. H., Xiang, F., Li, J. C., Shi, Z. F., Wang, X., & Lin, Q. (2016a). Modification of montmorillonite by ball-milling method for immobilization and delivery of acetamiprid based on alginate/exfoliated montmorillonite nanocomposite. Polymer Bulletin, 73, 1185–1206.

    Article  Google Scholar 

  • Yan, H. Q., Chen, X. Q., Feng, Y. H., Xiang, F., Li, J. C., Wang, X. H., & Lin, Q. (2016b). Preparation of liquid paraffin/water pickering emulsions stabilized by modified montmorillonite with wet ball mill method. China Surfactant Detergent & Cosmetics, 46, 697–708.

    Google Scholar 

  • Yan, H. Q., Chen, X. Q., Bao, C. L., Yi, J. L., Lei, M. Y., Ke, C. R.,Zhang, W. & Lin, Q. (2020a). Synthesis and assessment of CTAB and NPE modified organomontmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloids and Surfaces B: Biointerfaces, 191.

  • Yan, H. Q., Zhang, P., Chen, X. Q., Bao, C. L., Zhao, R., Hu, J. S., Liu, C. & Lin, Q. (2020b). Preparation and characterization of octyl phenyl polyoxyethylene ether modified organo-montmorillonite for ibuprofen controlled release. Applied Clay Science, 189.

  • Yang, S. F., Gao, M. L., & Luo, Z. X. (2014). Adsorption of 2-naphthol on the organo-montmorillonites modified by gemini surfactants with different spacers. Chemical Engineering Journal, 256, 39–50.

  • Yang, Q., Gao, M. L., Luo, Z. X., & Yang, S. F. (2016). Enhanced removal of bisphenol A from aqueous solution by organo-montmorillonites modified with novel gemini pyridinium surfactants containing long alkyl chain. Chemical Engineering Journal, 285, 27–38.

  • Yang, J., Yu, K., & Liu, C. (2017). Chromium immobilization in soil using quaternary ammonium cations modified montmorillonite: Characterization and mechanism. Journal of Hazardous Materials, 321, 73–80.

    Article  Google Scholar 

  • Ye, L. X., Zhong, A. Y., Chen, D. B., & Yang, F. (2005). Preparation and properties of nano-montmorillonite paper–plastic laminating adhesive. Journal of Applied Polymer Science, 97, 872–877.

  • Ye, L. X., Zhong, A. Y., Chen, D. B., & Yang, F. (2014). Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. Journal of Physical Chemistry C, 118(21), 11464–11477.

  • Yi, D. Q., Yang, H. X., Zhao, M., Huang, L., Camino, G., Frache, A., & Yang, R. J. (2017). A novel, low surface charge density, anionically modified montmorillonite for polymer nanocomposites. RSC Advances, 7, 5980–5988.

    Article  Google Scholar 

  • Yılmaz, Y. Y., Yalçınkaya, E. E., Demirkol, D. O., & Timur, S. (2020). 4-aminothiophenol-intercalated montmorillonite: organic-inorganic hybrid material as an immobilization support for biosensors. Sensors and Actuators B Chemical, 307.

  • Yin, Q. X., Zhang, Z. P., Wu, S. Q., Tan, J. L., & Ke, M. (2015). Preparation and characterization of novel cationic–nonionic organo-montmorillonite. Materials Express, 5, 180–190.

  • Yu, W. H., Li, N., Tong, D. S., Zhou, C. H., Lin, C. X., & Xu, C. Y. (2013). Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review. Applied Clay Science, 80–81, 443–452.

    Article  Google Scholar 

  • Yu, W. H., Ren, Q. Q., Tong, D. S., Zhou, C. H., & Wang, H. (2014). Clean production of ctab-montmorillonite: Formation mechanism and swelling behavior in xylene. Applied Clay Science, 97–98, 222–234.

    Article  Google Scholar 

  • Yu, K., Xu, J., Jiang, X. H., Liu, C., McCall, W., & Lu, J. L. (2017a). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, 884–891.

    Article  Google Scholar 

  • Yu, W. H., Zhu, T. T., Tong, D. S., Wang, M., Wu, Q. Q., & Zhou, C. H. (2017b). Preparation of organo-montmorillonites and the relationship between microstructure and swellability. Clays and Clay Minerals, 65, 417–430.

    Article  Google Scholar 

  • Yu, C.C., Ke, Y.C., Deng, Q.C., Lu, S.C., Ji, J.Q., Hu, X., & Zhao, Y. (2018). Synthesis and characterization of polystyrene-montmorillonite nanocomposite particles using an anionic-surfactant-modified clay and their friction performance. Applied Sciences–Basel, 8. https://doi.org/10.3390/app8060964.

  • Zawrah, M. F., Khattab, R. M., Saad, E. M., & Gado, R. A. (2014). Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochimica Acta Part a–Molecular and Biomolecular Spectroscopy, 122, 616–623.

    Article  Google Scholar 

  • Zhang, Z., Liao, L., & Xia, Z. (2010). Ultrasound-assisted preparation and characterization of anionic surfactant modified montmorillonites. Applied Clay Science, 50, 576–581.

    Article  Google Scholar 

  • Zhang, Y. X., Long, Y. Y., Zhang, Y. C., Zhu, Y., Wang, H. T., Wu, H. Y., & Lu, W. J.(2012a). Effect of a mixed anionic-nonionic surfactant adsorption on bentonite structure and on distribution of pentachlorophenol. Applied Clay Science, 69, 93–98.

  • Zhang, Y. X., Zhao, Y., Zhu, Y., Wu, H. Y., Wang, H. T., & Lu, W. J. (2012b). Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure. Journal of Environmental Sciences, 24, 1525–1532.

  • Zhang, Z. P., Zhang, J. C., Liao, L. B., & Xia, Z. G. (2013). Synergistic effect of cationic and anionic surfactants for the modification of Ca-montmorillonite. Materials Research Bulletin, 48, 1811–1816.

  • Zhang, J. J., Mei, Q. L., Chen, L., Chen, X., & Zu, L. (2016). Thermal analysis of montmorillonite modified by imidazolium. Emerging Materials Research, 5, 214–220.

  • Zhang, H., Zhang, J. L., Gao, Y. L., Wang, W. T., Dong, H. Z., Hou, H. X., & Liu, X. X. (2017). Effect of modification extent of montmorillonite on the performance of starch nanocomposite films. Starch-Starke, 69.

  • Zheng, J. P., Li, J., Hao, H., & Yao, K. D. (2013). Influence of charge density and chain length on the interaction between organic anion and montmorillonite. Journal of Wuhan University of Technology-Materials Science Edition, 28, 6–11.

    Article  Google Scholar 

  • Zhou, C. H., Zhang, D., Tong, D. S., Wu, L. M., Yu, W. H., & Ismadji, S. (2012). Paper-like composites of cellulose acetate-organo-montmorillonite for removal of hazardous anionic dye in water. Chemical Engineering Journal, 209, 223–234.

    Article  Google Scholar 

  • Zhou, Q., Zhu, R. L., Parker, S. C., Zhu, J. X., He, H. P., & Molinari, M. (2015). Modelling the effects of surfactant loading level on the sorption of organic contaminants on organoclays. RSC Advances, 5, 47022–47030.

    Article  Google Scholar 

  • Zhou, D. J., Zhang, Z. P., Tang, J. L., Wang, F. W., & Liao, L. B. (2016a). Applied properties of oil-based drilling fluids with montmorillonites modified by cationic and anionic surfactants. Applied Clay Science, 121–122, 1–8.

  • Zhou, D. J., Zhang, Z. P., Tang, J. L., Zhang, M. Y., & Liao, L. B. (2016b). Effects of variables on the dispersion of cationic–anionic organomontmorillonites and characteristics of pickering emulsion. RSC Advances, 6, 9678–9685.

  • Zhou, D. J., Zhang, Z. P., Tang, J. L., Wu, S. Q., & Zhao, J. L. (2016c). A comparative study performance of cationic organic montmorillonite prepared by different methods. Science and Engineering of Composite Materials, 25, 53–58.

    Article  Google Scholar 

  • Zhou, C. H., Li, C. J., Gates, W. P., Zhu, T. T., & Yu, W. H. (2019). Co-intercalation of organic cations/amide molecules into montmorillonite with tunable hydrophobicity and swellability. Applied Clay Science, 179, 105157.

    Article  Google Scholar 

  • Zhu, J. X., Qing, Y. H., Wang, T., Zhu, R. L., Wei, J. M., Tao, Q., Yuan, P., & He, H. P. (2011). Preparation and characterization of zwitterionic surfactant-modified montmorillonites. Journal of Colloid and Interface Science, 360, 386–392.

  • Zhu, J. X., Qing, Y. H., Ma, L. Y., Zhu, R. L., & He, H. P. (2014). The structure of montmorillonites modified with zwitterionic surfactants and their sorption ability. Mineralogy and Petrology, 109, 349–355.

  • Zhu, J. X., Zhang, P., Qing, Y. H., Wen, K., Su, X. L., Ma, L. Y., Wei, J. M., Liu, H. M., He, H. P., & Xi, Y. F. (2017). Novel intercalation mechanism of zwitterionic surfactant modified montmorillonites. Applied Clay Science, 141, 265–271.

  • Zhu, T. T., Zhou, C. H., Kabwe, F. B., Wu, Q. Q., Li, C. S., & Zhang, J. R. (2019). Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 169, 48–66.

    Article  Google Scholar 

  • Zhuang, G. Z., Zhang, Z. P., Guo, J. S., Liao, L. B., & Zhao, J. L. (2015). A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Applied Clay Science, 104, 18–26.

  • Zhuang, G. Z., Zhang, H. X., Wu, H., Zhang, Z. P., & Liao, L. B. (2017a). Influence of the surfactants' nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 135, 244–252.

  • Zhuang, G. Z., Zhang, Z. P., Wu, H., Zhang, H. X., Zhang, X. M., & Liao, L. B. (2017b). Influence of the nonionic surfactants’ nature on the structures and properties of organo-montmorillonites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 116–123.

  • Zhuang, G. Z., Zhang, Z. P., & Jaber, M. (2019a). Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview. Applied Clay Science, 177, 63–81.

    Article  Google Scholar 

  • Zhuang, G. Z., Zhang, Z. P., Peng, S. M., Gao, J. H., Pereira, F. A. R., & Jaber, M. (2019b). The interaction between surfactants and montmorillonite and its influence on the properties of organo-montmorillonite in oil-based drilling fluids. Clays and Clay Minerals, 67, 190–208.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge financial support by the National Natural Scientific Foundation of China (41672033; 22072136); and from the open fund from the Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resource, China (ZD2020K09).

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Hui Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 16 March 2020; revised 8 November 2020; AE: Yael G. Mishael)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y.X., Liu, J.H., Gates, W.P. et al. ORGANO-MODIFICATION OF MONTMORILLONITE. Clays Clay Miner. 68, 601–622 (2020). https://doi.org/10.1007/s42860-020-00098-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-020-00098-2

Keywords

Navigation