Skip to main content
Log in

Co-modification of Bentonite by CTAB and Silane and its Performance in Oil-Based Drilling Mud

  • Published:
Clays and Clay Minerals

Abstract

The stability, dispersion, and rheological properties of clay suspensions are important in the process of drilling. Organic clays were obtained traditionally by cation exchange, which is thermally unstable due to weak electrostatic interaction between the cationic surfactant and clay minerals. The purpose of the present study was to yield a stable and well dispersed organic bentonite (OBent) as a rheological additive for oil-based drilling mud. The co-modified method was used to modify bentonite by a cationic surfactant (cetyltrimethoxyammonium bromide: CTAB) and a silane coupling agent (hexadecyltrimethoxysilane: HDTMS). Firstly, the basal spacing of bentonite was enlarged by intercalation of CTAB, and the thermal stability of bentonite was improved by covalent bonds of HDTMS onto the bentonite platelets. The as-prepared OBent was characterized by infrared analysis, X-ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy. The hydrophobicity, solubility, viscosity, and tribological performance of the OBent were also recorded. The test results showed that the hydrophobicity of the co-modified bentonite was improved significantly, and was greater than that of bentonite modified with single surfactant CTAB or HDTMS. The bentonite modified by the surfactant together with the silane coupling agent had stable rheology and a lower coefficient of friction than the single surfactant-modified bentonite because more HDTMS entered into the interlayer spaces and formed chemical bonds at the inner surface of platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  • Asgari, M., Abouelmagd, A., & Sundararaj, U. (2017). Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Applied Clay Science, 146, 439–448.

    Article  Google Scholar 

  • Asgari, M., & Sundararaj, U. (2018a). Pre-exfoliated nanoclay through two consecutive reaction systems: Silane functionalization followed by grafting of amino acid monomers. Applied Clay Science, 151, 81–91.

    Article  Google Scholar 

  • Asgari, M., & Sundararaj, U. (2018b). Silane functionalization of sodium montmorillonite nanoclay: The effect of dispersing media on intercalation and chemical grafting. Applied Clay Science, 153, 228–238.

    Article  Google Scholar 

  • Awad, A. M., Shaikh, S. M. R., Jalab, R., Gulied, M. H., Nasser, M. S., Benamor, A., & Adham, S. (2019). Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Separation and Purification Technology, 228, 115719.

    Article  Google Scholar 

  • Battas, A., Gaidoumi, A. E., Ksakas, A., & Kherbeche, A. (2019). Adsorption study for the removal of nitrate from water using local clay. The Scientific World Journal, 2019, 9529618.

    Article  Google Scholar 

  • Bergaya, F., & Lagaly, G. (2001). Surface modification of clay minerals. Applied Clay Science, 19, 1–3.

    Article  Google Scholar 

  • Bujdák, J. (2015). Effect of layer charge on the formation of polymer/layered silicate nanocomposites: Intercalation of polystyrene. The Journal of Physical Chemistry C, 119, 12016–12022.

    Article  Google Scholar 

  • Caenn, R., & Chillingar, G. V. (1996). Drilling fluids: State of the art. Journal of Petroleum Science and Engineering, 14, 221–230.

    Article  Google Scholar 

  • Chen, T. X., Yuan, Y., Zhao, Y. L., Rao, F., & Song, S. X. (2018). Effect of layer charges on exfoliation of montmorillonite in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 548, 92–97.

    Article  Google Scholar 

  • de Paiva, L. B., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8–24.

    Article  Google Scholar 

  • El Gaidoumi, A., Chaouni Benabdallah, A., El Bali, B., & Kherbeche, A. (2018). Synthesis and characterization of zeolite HS using natural pyrophyllite as new clay source. Arabian Journal for Science and Engineering, 43, 191–197.

  • El Gaidoumi, A., Dona-Rodriguez, J. M., Pulido Melian, E., Gonzalez-Diaz, O. M., Navio, J. A., El Bali, B., & Kherbeche, A. (2019a). Catalytic efficiency of cu-supported pyrophyllite in heterogeneous catalytic oxidation of phenol. Arabian Journal for Science and Engineering, 44, 6313–6325.

    Article  Google Scholar 

  • El Gaidoumi, A., Loqman, A., Benadallah, A. C., El Bali, B., & Kherbeche, A. (2019b). Co (ii)-pyrophyllite as catalyst for phenol oxidative degradation: Optimization study using response surface methodology. Waste and Biomass Valorization, 10, 1043–1051.

    Article  Google Scholar 

  • El Gaidoumi, A., Miguel Dona-Rodriguez, J., Pulido Melian, E., Manuel Gonzalez-Diaz, O., El Bali, B., Antonio Navio, J., & Kherbeche, A. (2019c). Mesoporous pyrophyllite-titania nanocomposites: Synthesis and activity in phenol photocatalytic degradation. Research on Chemical Intermediates, 45, 333–353.

    Article  Google Scholar 

  • Erdem, B., Özcan, A. S., & Özcan, A. (2010). Preparation of hdtma-bentonite: Characterization studies and its adsorption behavior toward dibenzofuran. Surface and Interface Analysis, 42, 1351–1356.

    Article  Google Scholar 

  • Fu, M., Zhang, Z. P., Wu, L. M., Zhuang, G. Z., Zhang, S., Yuan, J. Y., & Liao, L. B. (2016). Investigation on the co-modification process of montmorillonite by anionic and cationic surfactants. Applied Clay Science, 132–133, 694–701.

    Article  Google Scholar 

  • Gamba, M., Kovář, P., Pospíšil, M., & Torres Sánchez, R. M. (2017). Insight into thiabendazole interaction with montmorillonite and organically modified montmorillonites. Applied Clay Science, 137, 59–68.

    Article  Google Scholar 

  • Geyer, B., Hundshammer, T., Röhner, S., Lorenz, G., & Kandelbauer, A. (2014). Predicting thermal and thermo-oxidative stability of silane-modified clay minerals using thermogravimetry and isoconversional kinetic analysis. Applied Clay Science, 101, 253–259.

    Article  Google Scholar 

  • He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., & Frost, R. L. (2005). Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53, 287–293.

    Article  Google Scholar 

  • He, H., Ma, L., Zhu, J., Frost, R. L., Theng, B. K. G., & Bergaya, F. (2014). Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100, 22–28.

    Article  Google Scholar 

  • Hunnicutt, M. L., & Harris, J. M. (1986). Reactivity of organosilane reagents on microparticulate silica. Analytical Chemistry, 58, 748–752.

    Article  Google Scholar 

  • Huskić, M., Žigon, M., & Ivanković, M. (2013). Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 85, 109–115.

    Article  Google Scholar 

  • Impens, N. R. E., van der Voort, P., & Vansant, E. F. (1999). Silylation of micro-, meso- and non-porous oxides: A review. Microporous and Mesoporous Materials, 28, 217–232.

    Article  Google Scholar 

  • Kaufhold, S., & Dohrmann, R. (2013). The variable charge of dioctahedral smectites. Journal of Colloid and Interface Science, 390, 225–233.

    Article  Google Scholar 

  • Meng, X. H., Zhang, Y. H., Zhou, F. S., & Chu, P. K. (2012). Effects of carbon ash on rheological properties of water-based drilling fluids. Journal of Petroleum Science and Engineering, 100, 1–8.

    Article  Google Scholar 

  • Minase, M., Kondo, M., Onikata, M., & Kawamura, K. (2008). The viscosity of organic liquid suspensions of trimethyldococylammonium-montmorillonite complexes. Clays and Clay Minerals, 56, 49–65.

    Article  Google Scholar 

  • Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Ajala, A. O., & Mohammed, A. K. (2020). Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: A review. Applied Water Science, 10, 1–36.

    Article  Google Scholar 

  • Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33, 1119–1198.

    Article  Google Scholar 

  • Piscitelli, F., Posocco, P., Toth, R., Fermeglia, M., Pricl, S., Mensitieri, G., & Lavorgna, M. (2010). Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length. Journal of Colloid and Interface Science, 351, 108–115.

    Article  Google Scholar 

  • Raji, M., Mekhzoum, M. E. M., Rodrigue, D., Qaiss, A. E. K., & Bouhfid, R. (2018). Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Composites Part B: Engineering, 146, 106–115.

    Article  Google Scholar 

  • Shanmugharaj, A. M., Rhee, K. Y., & Ryu, S. H. (2006). Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. Journal of Colloid and Interface Science, 298, 854–859.

    Article  Google Scholar 

  • Shen, T., & Gao, M. (2019). Gemini surfactant modified organo-clays for removal of organic pollutants from water: A review. Chemical Engineering Journal, 375, 1–27.

    Article  Google Scholar 

  • Shen, H., Lv, K., Huang, X., Liu, J., Bai, Y., Wang, J., & Sun, J. (2019). Hydrophobic-associated polymer-based laponite nanolayered silicate composite as filtrate reducer for water-based drilling fluid at high temperature. Journal of Applied Polymer Science, 137, 48608.

    Article  Google Scholar 

  • Sinha Ray, S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science, 28, 1539–1641.

    Article  Google Scholar 

  • Song, K. (2001). Characterization of montmorillonite surfaces after modification by organosilane. Clays and Clay Minerals, 49, 119–125.

    Article  Google Scholar 

  • Sun, J. L., Zhuang, G. Z., Wu, S. Q., & Zhang, Z. P. (2016). Structure and performance of anionic–cationic-organo-montmorillonite in different organic solvents. RSC Advances, 6, 54747–54753.

    Article  Google Scholar 

  • van Olphen, H. (1964). Nternal mutual flocculation in clay suspensions. Journal of Colloid Science, 19, 313–322.

    Article  Google Scholar 

  • Waddell, T. G., Leyden, D. E., & DeBello, M. T. (1981). The nature of organosilane to silica-surface bonding. Journal of the American Chemical Society, 103, 5303–5307.

    Article  Google Scholar 

  • Wang, Z. Y., Xia, Y. Q., & Liu, Z. L. (2011). Study the sensitivity of solid lubricating additives to attapulgite clay base grease. Tribology Letters, 42, 141–148.

    Article  Google Scholar 

  • Xi, Y. F., Zhou, Q., Frost, R. L., & He, H. P. (2007). Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay. Journal of Colloid and Interface Science, 311, 347–353.

    Article  Google Scholar 

  • Xie, W., Gao, Z. M., Pan, W. P., Hunter, D., Singh, A., & Vaia, R. (2001). Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13, 2979–2990.

    Article  Google Scholar 

  • Yang, Y., Zhu, Z. K., Yin, J., Wang, X. Y., & Qi, Z. E. (1999). Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods. Polymer, 40, 4407–4414.

    Article  Google Scholar 

  • Zhong, Y., & Wang, S. Q. (2003). Exfoliation and yield behavior in nanodispersions of organically modified montmorillonite clay. Journal of Rheology, 47, 483–495.

    Article  Google Scholar 

  • Zhu, L. Z., Tian, S. L., Zhu, J. X., & Shi, Y. (2007). Silylated pillared clay (SPILC): A novel bentonite-based inorgano-organo composite sorbent synthesized by integration of pillaring and silylation. Journal of Colloid and Interface Science, 315, 191–199.

    Article  Google Scholar 

  • Zhuang, G. Z., Zhang, Z. P., Fu, M., Ye, X., & Liao, L. B. (2015). Comparative study on the use of cationic–nonionic-organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 116–117, 257–262.

    Article  Google Scholar 

  • Zhuang, G. Z., Zhang, Z. P., Sun, J. L., & Liao, L. B. (2016). The structure and rheology of organo-montmorillonite in oil-based system aged under different temperatures. Applied Clay Science, 124–125, 21–30.

    Article  Google Scholar 

  • Zhuang, G. Z., Zhang, H. X., Wu, H., Zhang, Z. P., & Liao, L. B. (2017a). Influence of the surfactants' nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 135, 244–252.

    Article  Google Scholar 

  • Zhuang, G. Z., Zhang, Z. P., Wu, H., Zhang, H. X., Zhang, X. M., & Liao, L. B. (2017b). Influence of the nonionic surfactants’ nature on the structures and properties of organo-montmorillonites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 116–123.

    Article  Google Scholar 

  • Zhuang, G. Z., Zhang, Z. P., Peng, S. M., Gao, J. H., Pereira, F. A. R., & Jaber, M. (2019). The interaction between surfactants and montmorillonite and its influence on the properties of organo-montmorillonite in oil-based drilling fluids. Clays and Clay Minerals, 67, 190–208.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by National Natural Science Foundation of China (grant Nos. 51775168, 21671053, 51875172, 51605143, and 51605469), by the scientific and technological innovation team of Henan Province University (grant No. 19IRTSTHN024), Science and Technology Development Plan Project of Henan Province (202102210254), and Key Scientific Research Project of Colleges and Universities in Henan Province (20A150003)

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangbin Yang or Pingyu Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 1 May 2020; revised 23 July 2020; AE: Jun Kawamata)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Yang, G., Zhang, S. et al. Co-modification of Bentonite by CTAB and Silane and its Performance in Oil-Based Drilling Mud. Clays Clay Miner. 68, 646–655 (2020). https://doi.org/10.1007/s42860-020-00093-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-020-00093-7

Keywords

Navigation