Skip to main content
Log in

Modification of palygorskite with cationic and nonionic surfactants for use in oil-based drilling fluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this work was to synthesize and characterize organically modified palygorskite clay with cationic and nonionic surfactants for use as an additive in oil-based drilling fluids. The cationic surfactant used was praepagen WB and the nonionic ones were ultramine TA50 and ultramine TA20. The organo-palygorskite clay (OPal) was obtained using a proportion of 15% of the surfactants. The samples were characterized by TG, DTA, DSC, DRX, MEV, and FTIR. The apparent and plastic viscosities were used to evaluate the rheological properties of OPal/oil dispersions aged at 66 and 150 °C. Through XRD and SEM, it was observed that the surfactants coated the clay surface without changing its crystal structure and morphology. Through TG, DTA, DSC, and FTIR, it was found that there was an incorporation of surfactants with content incorporated in the order of praepagen WB > Ultramina TA20 > Ultramina TA50. The organophilization process of palygorskite clay using cationic and non-ionic surfactants was effective. When mixing OPal with oil and aged at high temperatures, the dispersions OPal_WB/soluble oil and OPal_TA50/soluble oil show better rheological properties and thermal stability than dispersions formed with olefin. The rheological properties of OPal/soluble oil and OPal/glycerin + ethanol dispersions indicated that OPal is suitable for use as an additive in oil-based drilling fluids, showing that the nonionic surfactant can also be used to obtain organophilic clays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Williams RH, Khatri DK, Vaughan ML, Landry G, Janner L, Mutize B et al., editors. Particle size distribution-engineered cementing approach reduces need for polymeric extenders in Haynesville shale horizontal reach wells. In: SPE Annual Technical Conference and Exhibition; 2011: Society of Petroleum Engineers.

  2. Caenn R, Chillingar GV. Drilling fluids: state of the art. J Petrol Sci Eng. 1996;14(3–4):221–30.

    CAS  Google Scholar 

  3. Chilingarian GV, Vorabutr P. Drilling and drilling fluids. New York: Elsevier; 1983.

    Google Scholar 

  4. Meng X, Zhang Y, Zhou F, Chu PK. Effects of carbon ash on rheological properties of water-based drilling fluids. J Petrol Sci Eng. 2012;100:1–8.

    CAS  Google Scholar 

  5. Khodja M, Canselier JP, Bergaya F, Fourar K, Khodja M, Cohaut N, et al. Shale problems and water-based drilling fluid optimisation in the Hassi Messaoud Algerian oil field. Appl Clay Sci. 2010;49(4):383–93.

    CAS  Google Scholar 

  6. Liu XQ, Chen DH, Chen MA. Study and application of environmental whole oil based drilling fluid. Drill Fluid Completion Fluid. 2011;28(2):10–2.

    CAS  Google Scholar 

  7. Saasen A, Berntsen M, Løklingholm G, Igeltjørn H, Åsnes K, editors. The Effect of Drilling Fluid Base Oil Properties on the Occupational Hygiene and the Marine Environment. In: SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production; 2000: Society of Petroleum Engineers.

  8. Hermoso J, Martinez-Boza F, Gallegos C. Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure. Appl Clay Sci. 2014;87:14–21. https://doi.org/10.1016/j.clay.2013.10.011.

    Article  CAS  Google Scholar 

  9. Fathima NN, Dhathathreyan A. Effect of surfactants on the thermal, conformational and rheological properties of collagen. Int J Biol Macromol. 2009;45(3):274–8.

    CAS  PubMed  Google Scholar 

  10. Beall GW, Goss M. Self-assembly of organic molecules on montmorillonite. Appl Clay Sci. 2004;27(3–4):179–86.

    CAS  Google Scholar 

  11. Guégan R, Giovanela M, Warmont F, Motelica-Heino M. Nonionic organoclay: A ‘Swiss Army knife’for the adsorption of organic micro-pollutants? J Colloid Interface Sci. 2015;437:71–9.

    PubMed  Google Scholar 

  12. Shen Y-H. Preparations of organobentonite using nonionic surfactants. Chemosphere. 2001;44(5):989–95.

    CAS  PubMed  Google Scholar 

  13. Silva I, Sousa F, Menezes R, Neves G, Santana L, Ferreira H. Modification of bentonites with nonionic surfactants for use in organic-based drilling fluids. Appl Clay Sci. 2014;95:371–7.

    CAS  Google Scholar 

  14. Deng Y, Dixon JB, White GN. Intercalation and surface modification of smectite by two non-ionic surfactants. Clays Clay Miner. 2003;51(2):150–61.

    CAS  Google Scholar 

  15. Rocha R, Zanardo A, Moreno M. Study of rheological behavior of slips prepared with clays from Corumbataí Formation used in ceramic pole of Santa Gertrudes (SP). Cerâmica. 2008;54(331):332–7.

    Google Scholar 

  16. Guegan R, Gautier M, Beny J-M, Muller F. Adsorption of a C10E3 non-ionic surfactant on a Ca-smectite. Clays Clay Miner. 2009;57(4):502–9.

    CAS  Google Scholar 

  17. Dino D, Thompson J. Organophilic clay additives and oil well drilling fluids with less temperature dependent rheological properties containing said additives. Google Patents. 2002.

  18. Weng J, Gong Z, Liao L, Lv G, Tan J. Comparison of organo-sepiolite modified by different surfactants and their rheological behavior in oil-based drilling fluids. Appl Clay Sci. 2018;159:94–101. https://doi.org/10.1016/j.clay.2017.12.031.

    Article  CAS  Google Scholar 

  19. Zhuang G, Wu H, Zhang H, Zhang Z, Zhang X, Liao L. Rheological properties of organo-palygorskite in oil-based drilling fluids aged at different temperatures. Appl Clay Sci. 2017;137:50–8.

    CAS  Google Scholar 

  20. Zhuang G, Zhang H, Wu H, Zhang Z, Liao L. Influence of the surfactants’ nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Appl Clay Sci. 2017;135:244–52.

    CAS  Google Scholar 

  21. Zhuang G, Zhang Z, Gao J, Zhang X, Liao L. Influences of surfactants on the structures and properties of organo-palygorskite in oil-based drilling fluids. Microporous Mesoporous Mater. 2017;244:37–46.

    CAS  Google Scholar 

  22. Zhuang G, Zhang Z, Jaber M, Gao J, Peng S. Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids. J Ind Eng Chem. 2017;56:248–57. https://doi.org/10.1016/j.jiec.2017.07.017.

    Article  CAS  Google Scholar 

  23. Bradley W. The structural scheme of attapulgite. Am Mineral: J Earth Planet Mater. 1940;25(6):405–10.

    CAS  Google Scholar 

  24. Galan E. Properties and applications of palygorskite-sepiolite clays. Clay Miner. 1996;31(4):443–53.

    CAS  Google Scholar 

  25. Neaman A, Singer A. Rheological properties of aqueous suspensions of palygorskite. Soil Sci Soc Am J. 2000;64(1):427–36.

    CAS  Google Scholar 

  26. API. Specification for drilling-fluis materilas. In: Institute AP, editor. API specification 13A (SPEC 13A). Fifteenth edition ed. Washington. 1993.

  27. API. Recommended Practice for Field Testing Oil-Based Drilling Fluids. API Recommended Practice 13B-2. Fifth edition ed. Washington. 2012.

  28. Ezquerro CS, Ric GI, Miñana CC, Bermejo JS. Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl Clay Sci. 2015;111:1–9.

    CAS  Google Scholar 

  29. Malinová L, Jaksch D, Brožek J. Montmorillonite modified with lactim methyl ethers having different ring sizes. Appl Clay Sci. 2016;129:20–6.

    Google Scholar 

  30. Zhuang G, Zhang Z, Chen H. Influence of the interaction between surfactants and sepiolite on the rheological properties and thermal stability of organo-sepiolite in oil-based drilling fluids. Microporous Mesoporous Mater. 2018;272:143–54.

    CAS  Google Scholar 

  31. Tartaglione G, Tabuani D, Camino G. Thermal and morphological characterisation of organically modified sepiolite. Microporous Mesoporous Mater. 2008;107(1–2):161–8.

    CAS  Google Scholar 

  32. Kuang W, Facey GA, Detellier C, Casal B, Serratosa JM, Ruiz-Hitzky E. Nanostructured hybrid materials formed by sequestration of pyridine molecules in the tunnels of sepiolite. Chem Mater. 2003;15(26):4956–67.

    CAS  Google Scholar 

  33. Kuang W, Facey GA, Detellier C. Organo-mineral nanohybrids. Incorporation, coordination and structuration role of acetone molecules in the tunnels of sepiolite. J Mater Chem. 2006;16(2):179–85.

    CAS  Google Scholar 

  34. Frost RL, Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochim Acta. 2003;397(1–2):119–28.

    CAS  Google Scholar 

  35. Brigatti MF, Galan E, Theng B. Structure and mineralogy of clay minerals. In: Developments in clay science. Amsterdam: Elsevier; 2013. p. 21–81.

    Google Scholar 

  36. Baltar CAM, Luz AB, Baltar LM, de Oliveira CH, Bezerra FJ. Influence of morphology and surface charge on the suitability of palygorskite as drilling fluid. Appl Clay Sci. 2009;42(3):597–600. https://doi.org/10.1016/j.clay.2008.04.008.

    Article  CAS  Google Scholar 

  37. Zhuang G, Zhang Z, Yang H, Tan J. Structures and rheological properties of organo-sepiolite in oil-based drilling fluids. Appl Clay Sci. 2018;154:43–51.

    CAS  Google Scholar 

  38. Xavier KCM, Silva Filho E, Santos M, Santos M, da Luz AB. Caracterização mineralógica, morfológica e de superfície da atapulgita de guadalupe-PI. HOLOS. 2012;5:60–70.

    Google Scholar 

  39. Chen T, Wang H, Zhang X, Zheng N. SAED and HRTEM investigation of palygorskite. Acta Geol Sinica-Engl Edn. 2008;82(2):385–91.

    CAS  Google Scholar 

  40. Dahab A, Jarjarah M. Thermal stability of Saudi palygorskite for drilling muds. Clay Miner. 1989;24(4):695–700.

    CAS  Google Scholar 

  41. Neaman A, Singer A. Possible use of the Sacalum (Yucatan) palygorskite as drilling muds. Appl Clay Sci. 2004;25(1–2):121–4.

    CAS  Google Scholar 

  42. Abdo J, Al-Sharji H, Hassan E. Effects of nano-sepiolite on rheological properties and filtration loss of water-based drilling fluids. Surf Interface Anal. 2016;48(7):522–6. https://doi.org/10.1002/sia.5997.

    Article  CAS  Google Scholar 

  43. Abdo J, Haneef M. Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Appl Clay Sci. 2013;86:76–82.

    CAS  Google Scholar 

  44. Haden WL, Schwint IA. Attapulgite: its properties and applications. Ind Eng Chem. 1967;59(9):58–69.

    CAS  Google Scholar 

  45. Xu J, Wang W, Wang A. Dispersion of palygorskite in ethanol–water mixtures via high-pressure homogenization: microstructure and colloidal properties. Powder Technol. 2014;261:98–104.

    CAS  Google Scholar 

  46. Khorami J, Lemieux A. Comparison of attapulgites from different sources using TG/DTG and FTIR. Thermochim Acta. 1989;138(1):97–105.

    CAS  Google Scholar 

  47. Suárez M, Garcia-Romero E. FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Appl Clay Sci. 2006;31(1–2):154–63.

    Google Scholar 

  48. Chen H, Zhao J, Zhong A, Jin Y. Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chem Eng J. 2011;174(1):143–50.

    CAS  Google Scholar 

  49. Boudriche L, Calvet R, Hamdi B, Balard H. Effect of acid treatment on surface properties evolution of attapulgite clay: an application of inverse gas chromatography. Coll Surf, A. 2011;392(1):45–54.

    CAS  Google Scholar 

  50. Frost RL, Locos OB, Ruan H, Kloprogge JT. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vib Spectrosc. 2001;27(1):1–13.

    CAS  Google Scholar 

  51. Frost RL, Mendelovici E. Modification of fibrous silicates surfaces with organic derivatives: an infrared spectroscopic study. J Coll Interface Sci. 2006;294(1):47–52.

    CAS  Google Scholar 

  52. Shen L, Lin Y, Du Q, Zhong W, Yang Y. Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure. Polymer. 2005;46(15):5758–66.

    CAS  Google Scholar 

  53. Cai Y, Xue J, Polya D. A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites. Spectrochim Acta Part A Mol Biomol Spectrosc. 2007;66(2):282–8.

    Google Scholar 

  54. Madejova J, Komadel P. Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner. 2001;49(5):410–32.

    CAS  Google Scholar 

  55. Leite I, Raposo C, Silva S. Caracterização estrutural de argilas bentoníticas nacional e importada: antes e após o processo de organofilização para utilização como nanocargas. Cerâmica. 2008;54(331):303–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué da Silva Buriti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Brito Buriti, B.M.A., Barsosa, M.E., da Silva Buriti, J. et al. Modification of palygorskite with cationic and nonionic surfactants for use in oil-based drilling fluids. J Therm Anal Calorim 147, 2935–2945 (2022). https://doi.org/10.1007/s10973-021-10701-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10701-w

Keywords

Navigation