Skip to main content
Log in

MODIFICATION OF HALLOYSITE NANOTUBES FOR ENHANCEMENT OF GAS-ADSORPTION CAPACITY

  • Published:
Clays and Clay Minerals

Abstract

Structure control and quantitative evaluation of porous materials are essential for many industrial and consumer applications of clay minerals, and nanotubular halloysite (HNT) has been used extensively for such purposes; performance enhancements are still needed, however. The objective of the present study was to improve the gas-adsorption capacity of HNT by controlling the particle size and porosity. This was accomplished through acid treatment and particle-size fractionation by centrifugation. Various particle sizes were obtained and porosities ranged from macropores to mesopores. Natural halloysite nanotubes were modified by sulfuric acid in various concentrations to selectively remove the alumina composition of the tubes. X-ray diffraction and energy dispersive X-ray spectroscopy were used to verify the mineralogical and compositional changes. Surface modification by the acid treatment increased the inner space volume of the tubes and decreased the mass of the nanotubes because of the elimination of alumina. The gas adsorption capacity of both natural and modified halloysite nanotubes was measured quantitatively using N2 adsorption and the Brunauer-Emmett-Teller (BET) method, and the morphology was determined from transmission electron microscopy (TEM) images. The results showed that the modified halloysite nanotube was 7.47 times more efficient at gas adsorption than pristine halloysite. Moreover, the dealumination of the surface increased the inner space. Greatly increased porosity characteristics, including gas adsorption and macroporosity, were obtained through modification by acid treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  • Abdullayev, E., Sakakibara, K., Okamoto, K., Wei, W., Ariga, K., & Lvov, Y. (2011). Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Applied Materials & Interfaces, 3, 4040–4046.

    Article  Google Scholar 

  • Abdullayev, E., Joshi, A., Wei, W., Zhao, Y., & Lvov, Y. (2012). Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano, 6, 7216–7226.

    Article  Google Scholar 

  • Baiju, K., Shukla, S., Biju, S., Reddy, M., & Warrier, K. (2009). Hydrothermal processing of dye-adsorbing one-dimensional hydrogen titanate. Materials Letters, 63, 923–926.

    Article  Google Scholar 

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380.

    Article  Google Scholar 

  • Chao, C., Liu, J., Wang, J., Zhang, Y., Zhang, B., Zhang, Y., Xiang, X., & Chen, R. (2013). Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Applied Materials & Interfaces, 5, 10559–10564.

    Article  Google Scholar 

  • Costanzo, P., & Giese, R. (1985). Dehydration of synthetic hydrated kaolinites: a model for the dehydration of halloysite (10 Å). Clays and Clay Minerals, 33, 415–423.

    Article  Google Scholar 

  • De Silva, R., Pasbakhsh, P., Goh, K., Chai, S.-P., & Ismail, H. (2013). Physico-chemical characterisation of chitosan/halloysite composite membranes. Polymer Testing, 32, 265–271.

    Article  Google Scholar 

  • Gorrasi, G. (2015). Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydrate Polymers, 127, 47–53.

    Article  Google Scholar 

  • Guimaraes, L., Enyashin, A. N., Seifert, G., & Duarte, H. A. (2010). Structural, electronic, mechanical properties of single-walled halloysite nanotube models. Journal of Physical Chemistry C, 114, 11358–11363.

    Article  Google Scholar 

  • Guo, M., Wang, A., Muhammad, F., Qi, W., Ren, H., Guo, Y., & Zhu, G. (2012). Halloysite nanotubes, a multifunctional nanovehicle for anticancer drug delivery. Chinese Journal of Chemistry, 30, 2115–2120.

    Article  Google Scholar 

  • Hong, C. H., Liu, Y. D., & Choi, H. J. (2013). Carbonyl iron suspension with halloysite additive and its magnetorheology. Applied Clay Science, 80, 366–371.

    Article  Google Scholar 

  • Joo, Y., Sim, J. H., Jeon, Y., Lee, S. U., & Sohn, D. (2013). Opening and blocking the inner-pores of halloysite. Chemical Communications, 49, 4519–4521.

    Article  Google Scholar 

  • Kamble, R., Ghag, M., Gaikawad, S., & Panda, B. K. (2012). Halloysite nanotubes and applications: a review. Journal of Advanced Scientific Research, 3, 25–29.

    Google Scholar 

  • Kaneko, K. (1994). Determination of pore size and pore size distribution: 1. Adsorbents and catalysts. Journal of Membrane Science, 96, 59–89.

    Article  Google Scholar 

  • Ko, J., Lee, J., Yoo, B., Ryu, J., & Sohn, D. (2016). Capillarity-induced selective ex-situ synthesis of metal–organic framework inside mesoporous nanotubes. Microporous and Mesoporous Materials, 220, 16–20.

    Article  Google Scholar 

  • Lazzara, G., Cavallaro, G., Panchal, A., Fakhrullin, R., Stavitskaya, A., Vinokurov, V., & Lvov, Y. (2018). An assembly of organic-inorganic composites using halloysite clay nanotubes. Current Opinion in Colloid & Interface Science, 35, 42–50.

    Article  Google Scholar 

  • Lippens, B. C., & De Boer, J. (1965). Studies on pore systems in catalysts: V. The t method. Journal of Catalysis, 4, 319–323.

    Article  Google Scholar 

  • Liu, M., Zhang, Y., Wu, C., Xiong, S., & Zhou, C. (2012). Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. International Journal of Biological Macromolecules, 51, 566–575.

    Article  Google Scholar 

  • Luan, Z., He, H., Zhou, W., Cheng, C.-F., & Klinowski, J. (1995). Effect of structural aluminium on the mesoporous structure of MCM-41. Journal of the Chemical Society, Faraday Transactions, 91, 2955–2959.

    Article  Google Scholar 

  • Luo, Z., Song, H., Feng, X., Run, M., Cui, H., Wu, L., Gao, J., & Wang, Z. (2013). Liquid crystalline phase behavior and sol–gel transition in aqueous halloysite nanotube dispersions. Langmuir, 29, 12358–12366.

    Article  Google Scholar 

  • Lvov, Y., Aerov, A., & Fakhrullin, R. (2014). Clay nanotube encapsulation for functional biocomposites. Advances in Colloid and Interface Science, 207, 189–198.

    Article  Google Scholar 

  • Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2016). Halloysite clay nanotubes for loading and sustained release of functional compounds. Advanced Materials, 28, 1227–1250.

    Article  Google Scholar 

  • Massaro, M., Riela, S., Cavallaro, G., Gruttadauria, M., Milioto, S., Noto, R., & Lazzara, G. (2014). Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. Journal of Organometallic Chemistry, 749, 410–415.

    Article  Google Scholar 

  • Mroczek, K., Kalisz, S., Pronobis, M., & Sołtys, J. (2011). The effect of halloysite additive on operation of boilers firing agricultural biomass. Fuel Processing Technology, 92, 845–855.

    Article  Google Scholar 

  • Owoseni, O., Nyankson, E., Zhang, Y., Adams, S. J., He, J., McPherson, G. L., Bose, A., Gupta, R. B., & John, V. T. (2014). Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation. Langmuir, 30, 13533–13541.

    Article  Google Scholar 

  • Schull, C. (1948). The determination of pore size distribution from gas adsorption data. Journal of the American Chemical Society, 70, 1405–1410.

    Article  Google Scholar 

  • Shi, Y.-F., Tian, Z., Zhang, Y., Shen, H.-B., & Jia, N.-Q. (2011). Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Research Letters, 6, 608.

    Article  Google Scholar 

  • Shu, Z., Chen, Y., Zhou, J., Li, T., Yu, D., & Wang, Y. (2015). Nanoporous-walled silica and alumina nanotubes derived from halloysite: controllable preparation and their dye adsorption applications. Applied Clay Science, 112, 17–24.

    Article  Google Scholar 

  • Szczepanik, B., Słomkiewicz, P., Garnuszek, M., Rogala, P., Banaś, D., Kubala-Kukuś, A., & Stabrawa, I. (2017). Effect of temperature on halloysite acid treatment for efficient chloroaniline removal from aqueous solutions. Clays and Clay Minerals, 65, 155–167.

    Article  Google Scholar 

  • Tan, D., Yuan, P., Annabi-Bergaya, F., Yu, H., Liu, D., Liu, H., & He, H. (2013). Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous and Mesoporous Materials, 179, 89–98.

    Article  Google Scholar 

  • Tazaki, K. (2005). Microbial formation of a halloysite-like mineral. Clays and Clay Minerals, 53, 224–233.

    Article  Google Scholar 

  • Vergaro, V., Abdullayev, E., Lvov, Y. M., Zeitoun, A., Cingolani, R., Rinaldi, R., & Leporatti, S. (2010). Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 11, 820–826.

    Article  Google Scholar 

  • Wu, H., Watanabe, H., Ma, W., Fujimoto, A., Higuchi, T., Uesugi, K., Takeuchi, A., Suzuki, Y., Jinnai, H., & Takahara, A. (2013). Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir, 29, 14971–14975.

    Article  Google Scholar 

  • Wu, X., Liu, C., Qi, H., Zhang, X., Dai, J., Zhang, Q., Zhang, L., Wu, Y., & Peng, X. (2016). Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite-derived carbon nanotubes. Applied Clay Science, 119, 284–293.

    Article  Google Scholar 

  • Xi, L., Xiaojie, J., Rui, X., Jiang, M., Jie, W., & Liangyin, C. (2013). Halloysite nanotube composited thermo-responsive hydrogel system for controlled-release. Chinese Journal of Chemical Engineering, 21, 991–998.

    Article  Google Scholar 

  • Yah, W. O., Takahara, A., & Lvov, Y. M. (2012a). Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. Journal of the American Chemical Society, 134, 1853–1859.

    Article  Google Scholar 

  • Yah, W. O., Xu, H., Soejima, H., Ma, W., Lvov, Y., & Takahara, A. (2012b). Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. Journal of the American Chemical Society, 134, 12134–12137.

    Article  Google Scholar 

  • Zhang, A.-B., Pan, L., Zhang, H.-Y., Liu, S.-T., Ye, Y., Xia, M.-S., & Chen, X.-G. (2012). Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 182–188.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a National Research Foundation of Korea grant (NRF-2019R1F1A1056947).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daewon Sohn.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 5 September 2019; revised 18 December 2019; AE: Jun Kawamata)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S., Park, S. & Sohn, D. MODIFICATION OF HALLOYSITE NANOTUBES FOR ENHANCEMENT OF GAS-ADSORPTION CAPACITY. Clays Clay Miner. 68, 189–196 (2020). https://doi.org/10.1007/s42860-019-00059-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-00059-4

Key Words

Navigation