Skip to main content
Log in

Competitive Adsorption of Uranyl and Toxic Trace Metal Ions at MFe2O4-montmorillonite (M = Mn, Fe, Zn, Co, or Ni) Interfaces

  • Published:
Clays and Clay Minerals

Abstract

Adsorption of uranyl (UO22+) ions to mineral surfaces is a potentially effective method for removing this hazardous metal from water, but other toxic trace metal ions (Xn+: Rb+, Sr2+, Cr3+, Mn2+, Ni2+, Zn2+, Cd2+) in uraniferous wastewaters compete with UO22+ for adsorption sites and thus may diminish the capacity of adsorbents to sequester UO22+. A better understanding of competitive adsorption among these metal ions and the development of better adsorbents are, therefore, of critical importance. The purpose of the present study was to synthesize and characterize magnetic adsorbents, consisting of MFe2O4 (M = Mn, Fe, Zn, Co, or Ni) nanoparticles synthesized on montmorillonite (Mnt) edge sites, and to investigate their use as adsorbents for UO22+, including competitive adsorption with trace metal ions. Selective adsorption was studied using Langmuir, Freundlich, and Dubinin-Radushkevich isotherms, and the results showed that Xn+ ions were adsorbed primarily on MFe2O4-montmorillonite surfaces, and the UO22+ ions were adsorbed on the interfaces between montmorillonite edge surfaces and MFe2O4 nanoparticles. Using the Freundlich model, the interface adsorption capacity of UO22+ reached 25.1 mg·g–1 in mixed solution. Further, the UO22+ and Cr3+ ions had a redox reaction on the interfaces with synergistic adsorption. Herein, the adsorption capacity of Cr3+ was 60.2 mg·g–1 using the Freundlich isotherm. The results demonstrated that the MFe2O4-montmorillonite with highly selective adsorption of UO22+ ions is applicable to UO22+ treatment in the presence of toxic trace metal ions.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ai, Y. J., Liu, Y., Lan, W. Y., Jin, J. R., Xing, J. L., & Zou, Y. D. (2018). The effect of pH on the U(VI) sorption on graphene oxide (GO): A Theoretical Study. Chemical Engineering Journal,343, 460–466.

    Google Scholar 

  • Bedelean, H., Măicăneanu, A., Burcă, S., & Stanca, M. (2009). Removal of heavy metal ions from wastewaters using natural clays. Clay Minerals,44, 487–495.

    Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science,140, 114–131.

    Google Scholar 

  • Bian, L., Li, H. L., Li, Y. J., Nie, J. N., Dong, F. Q., Dong, H. L., Bian, L., Li, H., & Li, Y. (2017). Enhanced photovoltage response of hematite-X-ferrite interfaces (X = Cr, Mn, Co, or Ni). Nanoscale Research Letters,12, 136.

    Google Scholar 

  • Bian, L., Song, M., Dong, F., Duan, T., Xu, J., & Li, W. (2015). DFT and two-dimensional correlation analysis for evaluating the oxygen defect mechanism of low-density 4f (or 5f) elements interacting with Ca-Mt. RSC Advances,5, 28601–28610.

    Google Scholar 

  • Brigatti, M. F., Galán, E., & Theng, B. K. G. (2013). Structures and mineralogy of clay minerals. Pp. 19–86 in: Developments in Clay Science (F. Bergaya, B.K.G. Theng and G. Lagaly, editors). Elsevier, Amsterdam 1, 19–86.

  • Burns, P. C., Ewing, R. C., & Navrotsky, A. (2012). Nuclear fuel in a reactor accident. Science,335, 1184–1188.

    Google Scholar 

  • Campos, B., Aguilar-Carrillo, J., Algarra, M., Gonçalves, M. A., Rodríguez-Castellón, E., & Silva, J. C. (2013). Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Applied Clay Science,85, 53–63.

    Google Scholar 

  • Chang, J., Ma, J., Ma, Q., Zhang, D., Qiao, N., & Hu, M. (2015). Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Applied Clay Science,119, 132–140.

    Google Scholar 

  • Chen, J., Wen, W., Kong, L., Tian, S., Ding, F., & Xiong, Y. (2014). Magnetically separable and durable MnFe2O4 for efficient catalytic ozonation of organic pollutants. Industrial & Engineering Chemistry Research,53, 6297–6306.

    Google Scholar 

  • Chen, H., Wang, Y., Zhao, W., Xiong, G., Cao, X., & Dai, Y. (2017). Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aqueous solutions. Journal of Radioanalytical & Nuclear Chemistry,313, 1–15.

    Google Scholar 

  • Chen, L., Zhou, C. H., & Fiore, S. (2016). Functional magnetic nanoparticle/clay mineral nanocomposites: Preparation, magnetism and versatile applications. Applied Clay Science,127–128, 143–163.

  • Choi, J., & Park, J. W. (2005). Competitive adsorption of heavy metals and uranium on soil constituents and microorganism. Geosciences Journal,9, 53–61.

    Google Scholar 

  • De, D.J., Folens, K., De, C.J, Meledina, M., Van, T.G., Du, L.G. and Van, D.V.P., (2017) Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption. Journal of Hazardous Materials, 335, 1–9.

    Google Scholar 

  • Debasish, D., Sureshkumar, M. K., Siddhartha, K., Mithal, N., & Pillai, C. G. S. (2010). Sorption of uranium on magnetite nanoparticles. Journal of Radioanalytical and Nuclear Chemistry,285, 447–454.

    Google Scholar 

  • Deng, J., Chen, Y., Lu, Y., Ma, X., Feng, S., Gao, N., & Li, J. (2017). Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in fenton-like oxidation of rhodamine B. Environmental Science and Pollution Research,24, 14396–14408.

    Google Scholar 

  • Dhiraj, S., Garima, M., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology,99, 6017–6027.

  • Dorota, K., Marzena, G., Ievgen, V. P., & Hubicki, Z. B. (2016). Development of new effective sorbents based on nanomagnetite. Nanoscale Research Letters,11, 152.

    Google Scholar 

  • Dubinin, M. M. (1960). The Potential Theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews,60, 235–241.

    Google Scholar 

  • Fatimah, I., Wang, S., & Wulandari, D. (2011). ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue. Applied Clay Science,53, 553–560.

    Google Scholar 

  • Freundlich, H. (1906). Ueber die adsorption in loesungen (Adsorption in solution). Physical Chemistry,57, 384–470.

    Google Scholar 

  • Gao, X., Liu, X., Zhu, Z., Wang, X., & Xie, Z. (2016). Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Scientific Reports,6, 30543–30558.

    Google Scholar 

  • Hajjaji, W., Andrejkovicova, S., Pullar, R. C., Tobaldi, D. M., Lopez-Galindo, A., Jammousi, F., Rocha, F., & Labrincha, J. A. (2016). Effective removal of anionic and cationic dyes by kaolinite and TiO2/kaolinite composites. Clay Minerals,51, 19–27.

    Google Scholar 

  • He, H., Zong, M., Dong, F., Yang, P., Ke, G., & Liu, M. (2017). Simultaneous removal and recovery of uranium from aqueous solution using TiO2, photoelectrochemical reduction method. Journal of Radioanalytical & Nuclear Chemistry,313, 59–67.

    Google Scholar 

  • Hennig, C., Reich, T., Dahn, R., & Scheidegger, A. M. (2002). Structure of uranium sorption complexes at montmorillonite edge sites. Radiochimica Acta, 90, 653–657.

    Google Scholar 

  • Hong, H., Kim, J., Fang, X., Hong, S., & Chiang, T. C. (2017). Interfacial stability of ultrathin films of magnetite Fe3O4(111) on Al2O3(001) grown by ozone-assisted molecular-beam epitaxy. Applied Physics Letters,110, 021601.

    Google Scholar 

  • Hu, B., Ye, F., & Ren, X. (2016). X-ray absorption fine structure study of enhanced sequestration of U(VI) and Se(IV) by montmorillonite decorated zerovalent iron nanoparticles. Environmental Science: Nano,3, 1460–1472.

    Google Scholar 

  • Hu, J., Lo, I. M., & Chen, G. (2005). Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir the ACS Journal of Surfaces & Colloids,21, 11173–11179.

    Google Scholar 

  • Hu, C., Gao, Z., & Yang, X. (2008). One-pot low temperature synthesis of MFe2O4 (M = Co, Ni, Zn) superparamagnetic nanocrystals. Journal of Magnetism & Magnetic Materials,320, L70–L73.

    Google Scholar 

  • Jiang, H., Sun, M., Xu, J., Lu, A., & Shi, Y. (2016). Magnetic Fe3O4 Nanoparticles modified with polyethyleneimine for the removal of Pb(II). Clean Soil Air Water,44, 1146–1153.

    Google Scholar 

  • Kalantari, K., Ahmad, M.B., Masoumi, H.R, Shameli, K., Basri, M. and Khandanlou, R. (2015) Rapid and high capacity adsorption of heavy metals by Fe3O4/montmorillonite nanocomposite using response surface methodology: preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study. Journal of the Taiwan Institute of Chemical Engineers, 49, 192–198.

    Google Scholar 

  • Karamanis, D. T. (1997). An aluminum pillared montmorillonite with fast uptake of strontium and cesium from aqueous solutions. Clays and Clay Minerals,45, 709–717.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society,40, 1361–1368.

    Google Scholar 

  • Li, Y., Yi, H., Tang, X., Liu, X., Wang, Y., & Cui, B. (2016). Study on the performance of simultaneous desulfurization and denitrification of Fe3O4-TiO2 composites. Chemical Engineering Journal,304, 89–97.

    Google Scholar 

  • Li, Y.Z, Wu, S.X., Yu, X.L., Bao, R.M., Wu, Z.K. & Wang, W. (2017) Optimization of pyrolysis efficiency based on optical property of semicoke in terahertz region. Energy, 126, 202–207.

  • Liu, G., Fang, H., Jing, Z., Li, L., Li, F., & Chen, L. (2014a). Yolk–shell structured Fe3O4@C@F-TiO2, microspheres with surface fluorinated as recyclable visible-light driven photocatalysts. Applied Catalysis B Environmental,150-151, 515–522.

    Google Scholar 

  • Liu, S., Xie, J., Su, Q., Du, G., Zhang, S., & Cao, G. (2014b). Understanding Li-storage mechanism and performance of MnFe2O4, by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy,8, 84–94.

    Google Scholar 

  • Liu, M., Yang, L., & Zhang, L. (2016). Functionalization of magnetic hollow porous oval shape NiFe2O4 as a highly selective sorbent for the simultaneous determination of five heavy metals in real samples. Talanta,161, 288–296.

    Google Scholar 

  • Lu, A. H., Salabas, E. L., & Schüth, F. (2010). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie,46, 1222–1244.

    Google Scholar 

  • McKinley, J. P., Zachara, J. M., Smith, S. C., & Turner, G. D. (1995). The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite. Clays and Clay Minerals,43, 586–598.

    Google Scholar 

  • Min, H. B, & Lee, S. Y. (2010). Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength. Journal of Industrial & Engineering Chemistry,16, 837–841.

    Google Scholar 

  • Phumying, S., Labuayai, S., Swatsitang, E., Amornkitbamrung, V., & Maensiri, S. (2013). Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Materials Research Bulletin,48, 2060–2065.

    Google Scholar 

  • Pylypchuk, I. V., Kołodyńska, D., Kozioł, M., & Gorbyk, P. P. (2016). Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Research Letters,11, 168.

    Google Scholar 

  • Qiu, W., Yang, D., Xu, J., Hong, B., Jin, H., & Jin, D. (2016). Efficient removal of Cr(VI) by magnetically separable CoFe2O4/activated carbon composite. Journal of Alloys and Compounds,678, 179–184.

    Google Scholar 

  • Rekhila, G., Trari, M., & Bessekhouad, Y. (2017). Characterization and application of the hetero-junction ZnFe2O4/TiO2 for Cr(VI) reduction under visible light. Applied Water Science,7, 1273–1281.

    Google Scholar 

  • Rufyikiri, G., Wannijn, J., Wang, L., & Thiry, Y. (2006). Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris. Environmental Pollution,141, 420–427.

    Google Scholar 

  • Sadeghi, S., Azhdari, H., Arabi, H., & Moghaddam, A. Z. (2012). Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. Journal of Hazardous Materials,215-216, 208–216.

    Google Scholar 

  • Santos, A. C., Barbosa, S., Pessoa, M. F., Leal, N., & Reboredo, F. (2018). Speciation, mobility and adsorption effects of various metals in sediments in an agricultural area surrounding a uranium ore deposit (Nisa, Portugal). Emirates Journal of Food and Agriculture,30, 503–514.

    Google Scholar 

  • Singer, D. M., Chatman, S. M., Ilton, E. S., Rosso, K. M., Banfield, J. F., & Waychunas, G. A. (2012). Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface. Environmental Science & Technology,46, 33811–33820.

    Google Scholar 

  • Singhal, P., Jha, S. K., Pandey, S. P., & Neogy, S. (2017). Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. Journal of Hazardous Materials,335, 152–161.

    Google Scholar 

  • Soliman, A. M., Murad, A. A., Sheikh, E. S. E., Massad, A. M., & Ali, I. M. (2017). Selective removal of uranium from wastewater using sludge collected from refinery wastewater treatment: Equilibrium, thermodynamic and kinetics studies. Journal of Water Process Engineering,19, 267–276.

    Google Scholar 

  • Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., & Li, G. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society,126, 273–279.

    Google Scholar 

  • Tinas, H., Çalişkan, E., Özbek, N., & Akman, S. (2016). Preparation of Fe3O4@ montmorillonite composite as an effective sorbent for the removal of lead and cadmium from wastewater samples. Turkish Journal of Chemistry,40, 974–978.

    Google Scholar 

  • Todorov, P. T., & Ilieva, E. N. (2006). Contamination with uranium from natural and anthropological sources. Romanian Journal of Physics,51, 27–40.

    Google Scholar 

  • Tu, Y., Chan, T., Tu, H., Wang, S., You, C., & Chang, C. (2016). Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles. Chemosphere,148, 452–458.

    Google Scholar 

  • Villalobos, M., Trotz, M. A., & Leckie, O. J. (2001). Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite. Environmental Science & Technology,35, 3849–3856.

    Google Scholar 

  • Wang, L., Li, J., Wang, Y., Zhao, L., & Jiang, Q. (2012a). Adsorption capability for congo red on nanocrystalline MFe2O4, (M = Mn, Fe, Co, Ni) spinel ferrites. Chemical Engineering Journal,181-182, 72–79.

    Google Scholar 

  • Wang, L., Li, J., Jiang, Q., & Zhao, L. (2012b). Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Transactions,41, 4544–4552.

    Google Scholar 

  • Wilke, I., Ramanathan, V., Lachance, J., Tamalonis, A., Aldersley, M., & Joshi, P. C. (2014). Characterization of the terahertz frequency optical constants of montmorillonite. Applied Clay Science,87, 61–65.

    Google Scholar 

  • Xiao, J., Chen, Y., & Xu, J. (2014). Plasma grafting montmorillonite/iron oxide composite with β-cyclodextrin and its application for high-efficient decontamination of U(VI). Journal of Industrial and Engineering Chemistry,20, 2830–2839.

    Google Scholar 

  • Xuan, S., Zeng, S., Fan, M., Qin, L., & Shu, K. (2010). One-step method of fabricating Fe3O4/Montmorillonite magnetic nanocomposites. Rare Metal Materials & Engineering,39, 165–168.

    Google Scholar 

  • Xu, S., Zhang, Y., Wang, S., Xu, J., Ding, H., & Li, G. (2013). Structure-enhanced photocatalytic removal of Cr(VI) by a TiO2 superstructure with ultrathin rutile nanorods and abundant {110}faces. European Journal of Inorganic Chemistry,14, 2601–2607.

  • Yan, L., Li, S., Yu, H., Shan, R., Du, B., & Liu, T. (2016). Facile solvothermal synthesis of Fe3O4/bentonite for efficient removal of heavy metals from aqueous solution. Powder Technology,301, 632–640.

    Google Scholar 

  • Yu, X., Huo, C. F., Li, Y. W., Wang, J., & Jiao, H. (2012). Fe3O4 surface electronic structures and stability from GGA+U. Surface Science,606, 872–879.

    Google Scholar 

  • Zhang, X., Wang, J., Li, R., Dai, Q., & Liu, L. (2013). Removal of uranium(VI) from aqueous solutions by surface modified magnetic Fe3O4 particles. New Journal of Chemistry,37, 3914–3919.

    Google Scholar 

  • Zhou, C. H., & Keeling, J. (2013). Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Applied Clay Science,74, 3–9.

    Google Scholar 

  • Zhou, C. H., Zhao, L. Z., Chen, T. H., Ai, Q. W., & Hong, P. H. (2016). Current fundamental and applied research into clay minerals in China. Applied Clay Science,119, 3–7.

    Google Scholar 

  • Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science,123, 239–258.

    Google Scholar 

  • Zou, H., Song, M., Yi, F., Bian, L., Liu, P., & Zhang, S. (2016). Simulated-sunlight-activated photocatalysis of methyl orange using carbon and lanthanum co-doped Bi2O3-TiO2 composite. Journal of Alloys and Compounds,680, 54–59.

    Google Scholar 

  • Zuo, Q., Gao, X., Yang, J., Zhang, P., Chen, G., Li, Y., Shi, K., & Wu, W. (2017). Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers,80, 754–760.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the National Natural Science Foundation of China (41872039 and 41831285), the One-Thousand Talents Scheme in Sichuan Province, Sichuan Science and Technology Program (2018JY0462), and Longshan Fund of Southwest University of Science and Technology (17QR004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Bian or Mianxin Song.

Additional information

This paper was originally presented during the World Forum on Industrial Minerals, held in Qing Yang, China, October 2018

Electronic supplementary material

ESM 1

(DOC 1980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Nie, J., Bian, L. et al. Competitive Adsorption of Uranyl and Toxic Trace Metal Ions at MFe2O4-montmorillonite (M = Mn, Fe, Zn, Co, or Ni) Interfaces. Clays Clay Miner. 67, 291–305 (2019). https://doi.org/10.1007/s42860-019-00028-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-00028-x

Keywords

Navigation