Skip to main content
Log in

Preparation and Characterization of High- Viscosity Montmorillonite

  • Published:
Clays and Clay Minerals

Abstract

Hydrophobicity, high viscosity, and dispersion are important properties for organo-montmorillonites, and all organo-montmorillonite configurations have yet to be fully characterized with respect to this property. High-viscosity montmorillonite (Mnt) is useful in gels and as an adsorber. The current study focused on modifying Mnt using organic cations and anions of various chain lengths in batch experiments with various concentrations and ratios. The viscosity of organic Mnt reached up to 395 mP.s. Molecular dynamics simulations and X-ray diffraction (XRD) were used to identify the conditions and arrangement of organic cations and anions in the Mnt interlayer area. The intercalation mechanism of organic cations and anions was also determined, providing a theoretical basis for the preparation of high-viscosity Mnt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alemdar, A., Őztekin, N., & Gűngőr, N. (2005). Effects of polyethyleneimine adsorption on the rheological properties of purified bentonite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252, 95–98.

    Article  Google Scholar 

  • Austin, J. C., Perry, A., Richter, D. D., & Schroeder, P. A. (2018). Modifications of 2:1 clay minerals in kaolinite-dominated ultisol under changing land-use regimes. Clays and Clay Minerals, 66, 61–73.

    Google Scholar 

  • Bumbudsanpharoke, N., Lee, W., Choi, J. C., & Park, S. J. (2017). Influence of montmorillonite nanoclay content on the optical, thermal, mechanical, and barrier properties of low-density polyethylene. Clays and Clay Minerals, 65, 387–397.

    Article  Google Scholar 

  • Dultz, S., Riebe, B., & Bunnenberg, C. (2005). Temperature effects on iodine adsorption on organo-clay minerals: II. Structural effects. Applied Clay Science, 28, 17–30.

    Article  Google Scholar 

  • Gűngőr, N., Alemdar, N., & Atici, O. (2001). The effect of SDS surfactant on the flow and zeta potential of bentonite suspensions. Materials Letters, 51, 250–254.

    Article  Google Scholar 

  • Günister, E., İşçi, S., Őztekin, N., Erim, F. B., Ece, Ő. I., & Gůngőr, N. (2006). Effect of cationic surfactant adsorption on the rheological and surface properties of bentonite dispersions. Journal of Colloid and Interface Science, 303, 137–141.

    Article  Google Scholar 

  • He, H., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., & Yang, D. (2006) Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262–271.

  • Irannajad, M. & Haghighi, H. K. (2017). Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: equilibrium, thermodynamics, and kinetics studies. Clays and Clay Minerals, 65, 52–62.

    Article  Google Scholar 

  • İşçi, S., Gűner, F. S., & Güngör, N. (2005). Investigation of rheological and collodial properties of bentonitic clay dispersion in the presence of a cationic surfactant. Progress in Organic Coatings, 54, 28–33.

    Article  Google Scholar 

  • İşçi, S., Günister, E., Alemdar, A., Ece, Ö. I., & Güngör, N. (2008). The influence of DTABr surfactant on the electrokinetic and rheological properties of soda-activated bentonite dispersions. Materials Letters, 62, 81–84.

    Article  Google Scholar 

  • Jeschke, F. & Meleshyn, A. (2011). A Monte Carlo study of interlayer and surface structures of tetraphenylphosphonium-modified Na-montmorillonite. Geoderma, 169, 33–40.

    Article  Google Scholar 

  • Kaci, A. & Chaouche, M. (2011). Influence of bentonite clay on the rheological behaviour of fresh mortars. Cement and Concrete Research, 41, 373–379.

    Article  Google Scholar 

  • Karataş, D., Tekin, A., & Çelik, M. S. (2017). Density functional theory computation of organic compound penetration into sepiolite tunnels. Clays and Clay Minerals, 65, 1–13.

    Article  Google Scholar 

  • Kwolek, T., Hodorowicz, M., Stadnicka, K., & Czapkiewicz, J. (2003). Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite. Journal of Colloid and Interface Science, 264(1), 14–19.

    Article  Google Scholar 

  • Lagaly, G. (1982). Layer charge heterogenerity in vermiculites. Clays and Clay Mineral, 30, 215–222.

    Article  Google Scholar 

  • Lv, G. C., Liu, L., Li, Z. H., Liao, L. B., & Liu, M. T. (2012). Probing the interactions between chlorpheniramine and 2:1 phyllosilicates. Journal of Colloid and Interface Science, 374, 218–225.

    Article  Google Scholar 

  • Martín Alfonso, J. E., Valencia, C., & Franco, J. M. (2014). Composition-property relationship of gel-like dispersions based on organo-bentonite, recycled polypropylene and mineral oil for lubricant purposes. Applied Clay Science, 87(1), 265–271.

    Article  Google Scholar 

  • Menezes, R. R., Marques, L. N., Campos, L. A., Ferreira, H. S., & Santana, L. N. (2010). Use of statistical design to study the influence of CMC on the rheological properties of bentonite dispersions for water-based drilling fluids. Applied Clay Science, 49, 13–20.

    Article  Google Scholar 

  • Ouhadi, V. R., Yong, R. N., & Sedighi, M. (2006). Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite. Applied Clay Science, 32, 217–231.

    Article  Google Scholar 

  • Pospíšil, M., Čapková, P., Weissmannová, H., Klika, Z., & Trchová, M. (2003). Structure analysis of montmorillonite intercalated with rhodamine B: modeling and experiment. Journal of Molecular Modeling, 9(1), 39–46.

    Article  Google Scholar 

  • Tunç, S. & Duman, O. (2008). The effect of different molecular weight of poly (ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 93–99.

    Article  Google Scholar 

  • Vassilios, C., Kelessidis, C., Cassiani, P., & Antonios, F. (2009). Application of Greek lignite as an additive for controlling rheological and filtration properties of water–bentonite suspensions at high temperatures: A review. International Journal of Coal Geology, 77, 394–400.

    Article  Google Scholar 

  • Wu, L. M., Tong, D. S., & Zhao, L. Z. (2014a). Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite. Applied Clay Science, 95(3), 74–82.

    Article  Google Scholar 

  • Wu, L. M., Liao, L. M., Lv, G. C., Qin, F. X., & Li, Z. H. (2014b). Microstructure and process of intercalation of imidazolium ionic liquids into montmorillonite. Chemical Engineering Journal, 236, 306–313.

    Article  Google Scholar 

  • Wu, L. M., Zhou, C. H., Tong, D. S., Yu, W. H., & Wang, H. (2014c). Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar. Cellulose, 21(4), 2845–2857.

    Article  Google Scholar 

  • Wu, L. M., Yang, C. X., Mei, L. F., Qin, F. X., Liao, L. B., & Lv, G. C. (2014d). Microstructure of different chain length ionic liquids intercalated into montmorillonite: a molecular dynamics study. Applied Clay Science, 99, 266–274.

    Article  Google Scholar 

  • Wungu, T. D. K., Aspera, S. M., David, M. Y., Dipojono, H. K., Nakanishi, H., & Kasai, H. (2011). Absorption of lithium in montmorillonite: a density functional theory (DFT) study. Journal of Nanoscience and Nanotechnology, 11(4), 2793–2801.

    Article  Google Scholar 

  • Yalçin, T., Alemdar, A., Ece, Ö. I., & Güngör, N. (2002). By particle interactions and rheological properties of bentonites+ALS suspensions. Materials Letters, 53, 211–215.

    Article  Google Scholar 

  • Yoshimoto, S., Ohashi, F., & Kameyama, T. (2005). X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing. Solid State Communications, 136, 251–256.

    Article  Google Scholar 

  • Yu, W. H., Ren, Q. Q., Tong, D. S., Zhou, C. H., & Wang, H. (2014). Clean production of CTAB-montmorillonite: formation mechanism and swelling behavior in xylene. Applied Clay Science, 97-98, 222–234.

    Article  Google Scholar 

  • Yu, W. H., Zhu, T. T., Tong, D. S., Wang, M., Wu, Q. Q., & Zhou, C. H. (2017). Preparation of organo-montmorillonites and the relationship between microstructure and swellability. Clays and Clay Minerals, 65, 417–430.

    Article  Google Scholar 

  • Zeng, Q. H., Yu, A. B., Lu, G. Q., & Standish, R. K. (2003). Molecular dynamics simulation of organic−inorganic nanocomposites: layering behavior and interlayer structure of organoclays. Chemistry of Materials, 15(25), 4732–4738.

    Article  Google Scholar 

  • Zhou, C. H. (2011). Cheminform abstract: Strategies towards clay-based designer catalysts for green and sustainable catalysis. Cheminform, 42(47), https://doi.org/10.1002/chin.201147260.

    Article  Google Scholar 

  • Zhou, C. H. & Keeling, J. (2013). Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Applied Clay Science, 74, 3–9.

    Article  Google Scholar 

  • Zhou, C. H., Shen, Z. F., Liu, L., & Liu, S. (2011). Preparation and functionality of clay-containing films. Journal of Materials Chemistry, 21(39), 15132–15153.

  • Zhou, C. H., Zhao, L. Z., Wang, A. Q., Chen, T. H., & He, H. P. (2016). Current fundamental and applied research into clay minerals in China. Applied Clay Science, 119, 3–7.

    Article  Google Scholar 

  • Zhou, C. H., Zhou, Q., Wu, Q. Q., Petit, S., Jiang, X. C., Xia, S. T., Li, C. S., & Yu, W. H. (2019). Modification, hybridization and applications of saponite: An overview. Applied Clay Science, 168, 136–154.

    Article  Google Scholar 

  • Zhou, J. H., Lu, X. C., Zhu, X. Z., Liu, X. D., Wei, J. M., & Zhou, Q. (2012). Interlayer structure and dynamics of HDTMA(+)-intercalated rectorite with and without water: a molecular dynamics study. The Journal of Physical Chemistry C, 116(24), 13071–13078.

    Article  Google Scholar 

  • Zhou, L. M., Chen, H., Jiang, X. H., Lu, F., Zhou, Y., & Yin, W. (2009). Modification of montmorillonite surfaces using a novel class of cationic Gemini surfactants. Journal of Colloid and Interface Science, 332(1), 16–21.

    Article  Google Scholar 

  • Zhou, Q., Shen, W., Zhu, J.X., Zhu, R.L., He, H.P., Zhou, J.H., & Yuan, P. (2014). Structure and dynamic properties of water saturated CTMA-montmorillonite: molecular dynamics simulations. Applied Clay Science, 97, 62–71.

  • Zhu, T. T., Zhou, C. H., Kabwe, F. B., Wu, Q. Q., Li, C. S., & Zhang, J. R. (2019). Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 169, 48–66.

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly funded by China Postdoctoral Science Foundation funded project (2018M631818) and the Doctoral Startup Foundation of Liaoning (20170520315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Xu.

Additional information

This paper was originally presented during the World Forum on Industrial Minerals, held in Qing Yang, China, October 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, X., Xu, C. et al. Preparation and Characterization of High- Viscosity Montmorillonite. Clays Clay Miner. 67, 306–314 (2019). https://doi.org/10.1007/s42860-019-00024-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-00024-1

Keywords

Navigation