Skip to main content
Log in

Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The conversion of cellulose to petroleum-like fuel is a very challenging yet attractive route to developing biomass-to-fuel technology. Many attempts have been made in liquefaction, pyrolysis and gasification of cellulose to produce fuels or intermediate chemicals. Previous studies indicate that these processes are tough. Hence, the present work is concerned with the development of new technologies for the conversion of cellulose into materials which are analogies to the precursor of petroleum. Montmorillonite-catalyzed hydrothermal carbonization of microcrystalline cellulose for the production of kerogen-like hydrochar under mild conditions was investigated. It was revealed that the hydrothermal carbonization of microcrystalline cellulose alone resulted in hydrochar with type III kerogen-like structure, whereas in the presence of montmorillonite, the hydrothermal carbonization of microcrystalline cellulose yielded a hydrochar-mineral complex, of which the isolated organic fraction was oil-prone type II kerogen-like structure. Results suggested that further improved montmorillonite-aided biomass conversion to more oil-prone kerogen-like solid products could be an alternative efficient route to obtain biofuel and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakandritsos A, Steriotis TH, Petridis D (2004) High surface area montmorillonite-carbon composites and derived carbons. Chem Mater 16:1551–1559

    Article  CAS  Google Scholar 

  • Ballice L, Yüksel M, Saglam M, Schulz H, Hanoglu C (1995) Application of infrared spectroscopy to the classification of kerogen types and the thermogravimetrically derived pyrolysis kinetics of oil shales. Fuel 74:1618–1623

    Article  CAS  Google Scholar 

  • Bedioui F (1995) Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview. Coordin Chem Rev 144:39–68

    Article  CAS  Google Scholar 

  • Brow DR, Rhodes CN (1997) Brønsted and Lewis acid catalysis with ion-exchanged clays. Catal Lett 45:35–40

    Article  Google Scholar 

  • Chen LF, Liang HW, Cui CH, Lu Y, Yu SH (2011) Synthesis of an attapulgite Clay@Carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27:8998–9004

    Article  CAS  Google Scholar 

  • Dinsmore HL, Nagy S (1974) Improved colorimetric determination for furfural in citrus juices. J AOAC 57:332–335

    CAS  Google Scholar 

  • Espitalie J, Madec M, Tissot B (1980) Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration. AAPG Bull 64(1):59–66

    CAS  Google Scholar 

  • Falco C, Baccile NM, Titirici M (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13:3273–3281

    Article  CAS  Google Scholar 

  • Forsman JP, Hunt JM (1958) Insoluble organic matter (kerogen) in sedimentary rocks. Geochim CosmoChim Ac 15:170–182

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod Bior 4:160–177

    Article  CAS  Google Scholar 

  • Ganz H, Kalkreuth W (1987) Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials. Fuel 66:708–711

    Article  CAS  Google Scholar 

  • Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383

    Article  CAS  Google Scholar 

  • Garcette-Lepecq A, Derenne S, Largeau C, Bouloubassi L, Saliot A (2000) Origin and formation pathways of kerogen-like organic matter in recent sediments off the Danube delta (northwestern Black Sea). Org Geochem 31:1663–1683

    Article  CAS  Google Scholar 

  • Gonzalez JM, Laird DA (2006) Smectite-catalyzed dehydration of glucose. Clay Clay Miner 54:38–44

    Article  CAS  Google Scholar 

  • Ibarra J, Muñoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24:725–735

    Article  CAS  Google Scholar 

  • Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38:2888–2895

    Article  CAS  Google Scholar 

  • Lin R, Ritz GP (1993) Reflectance FT-IR microspectroscopy of fossil algae contained in organic-rich shales. Appl Spectrosc 47:265–271

    Article  CAS  Google Scholar 

  • Lis GP, Mastablez M, Schimmelmann A, Lewan MD, Stankiewicz BA (2005) FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales. Oro Geochem 36:1533–1552

    Article  CAS  Google Scholar 

  • Madejova J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31:1–10

    Article  CAS  Google Scholar 

  • Mesquita JP, Reis LS, Purceno AD, Donnici CL, Lago RM, Pereira FV (2013) Carbon–clay composite obtained from the decomposition of cellulose nanocrystals on the surface of expanded vermiculite. J Chem Technol Biot 88:1130–1135

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Painter PC, Snyder RW, Starsinic M, Coleman MM, Kuehn DW, Davis A (1981) Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Appl Spectrosc 35:475–485

    Article  CAS  Google Scholar 

  • Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41:8682–8687

    Article  CAS  Google Scholar 

  • Sakanishi K, Ikeyama N, Sakaki T (1999) Comparison of the hydrothermal decomposition reactivities of chitin and cellulose. Ind Eng Chem Res 38:2177–2181

    Article  CAS  Google Scholar 

  • Seewald JS (2003) Organic–inorganic interactions in petroleum-producing sedimentary basins. Nature 426:327–333

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Article  CAS  Google Scholar 

  • Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198

    Article  CAS  Google Scholar 

  • Tissot B, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Tong DS, Xia X, Luo XP, Wu LM, Lin CX, Yu WH, Zhou CH (2013) Catalytic hydrolysis of cellulose to reducing sugar over acid-activated montmorillonite catalysts. Appl Clay Sci 74:147–153

    Article  CAS  Google Scholar 

  • Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41:53–71

    Article  CAS  Google Scholar 

  • Vandenbroucke M, Largeau C (2007) Kerogen origin, evolution and structure. Oro Geochem 38:719–833

    Article  CAS  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1995) Two crystalline phase (Iα/Iβ) system of native celluloses in relation to plant phylogenesis. Mokuzai Gakkaishi 40:50–56

    Google Scholar 

  • Wada M, Hori R, Kim UJ, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase. Polym Degrad Stab 95:1330–1334

    Article  CAS  Google Scholar 

  • Wang CC, Juang LC, Hsu TC, Lee CK, Lee JF, Huang FC (2004) Adsorption of basic dyes onto montmorillonite. J Colloid Interface Sci 273:80–86

    Article  CAS  Google Scholar 

  • Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012a) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932

    Article  CAS  Google Scholar 

  • Wu LM, Zhou CH, Keeling J, Tong DS, Yu WH (2012b) Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth-Sci Rev 115:373–386

    Article  CAS  Google Scholar 

  • Wu LM, Tong DS, Zhao LZ, Yu WH, Zhou CH, Wang H (2014) Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite. Appl Clay Sci 95:74–82

  • Xiao LP, Shi ZJ, Xu F, Sun RC (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623

    Article  CAS  Google Scholar 

  • Yan W, Acharjee TC, Coronella CJ, Va´squez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28:435–440

    Article  CAS  Google Scholar 

  • Yen TF, Wu WH, Chilingar GV (1984) A study of the structure of petroleum asphaltenes and related substances by infrared spectroscopy. Energy Sources 7:203–235

    Article  CAS  Google Scholar 

  • Yu Y, Wu H (2009) Characteristics and precipitation of glucose oligomers in the fresh liquid products obtained from the hydrolysis of cellulose in hot-compressed water. Ind Eng Chem Res 48:10682–10690

    Article  CAS  Google Scholar 

  • Zhou CH, Keeling J (2013) Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Appl Clay Sci 74:3–9

    Article  CAS  Google Scholar 

  • Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40:5588–5617

    Article  CAS  Google Scholar 

  • Zugenmaier P (2008) Cellulose. In crystalline cellulose and cellulose derivatives: Characterization and structures. Springer Series in Wood Science Berlin, Heidelberg, Springer, New York, p 72

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the National Natural Scientific Foundation of China (21373185), the Distinguished Young Scholar Grants from the Natural Scientific Foundation of Zhejiang Province (ZJNSF, R4100436), ZJNSF (LQ12B03004), Zhejiang “151 Talents Project”, and the projects (2010C14013 and 2009R50020-12) from Science and Technology Department of Zhejiang Provincial Government and the financial support by the open fund from Key Laboratory of Clay Minerals of the Ministry of Land and Resources, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Hui Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L.M., Zhou, C.H., Tong, D.S. et al. Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar. Cellulose 21, 2845–2857 (2014). https://doi.org/10.1007/s10570-014-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0323-2

Keywords

Navigation