Skip to main content
Log in

The Interaction between Surfactants and Montmorillonite and its Influence on the Properties of Organo-Montmorillonite in Oil-Based Drilling FluIDS

  • Published:
Clays and Clay Minerals

Abstract

The increasing demands for oil and gas and associated difficult drilling operations require oil-based drilling fluids that possess excellent rheological properties and thermal stability. The objective of the present work was to investigate the rheological properties and thermal stability of organo-montmorillonite (OMnt) modified with various surfactants and under various loading levels in oil-based drilling fluids, as revealed by the interaction between organic surfactants and montmorillonite. The influence of the structural arrangement of surfactants on the thermal stability of organo-montmorillonite (OMnt) in oil-based drilling fluids was also addressed. OMnt samples were prepared in aqueous solution using surfactants possessing either a single long alkyl chain two long alkyl chains. OMnt samples were characterized by X-ray diffraction, high-resolution transmission electron microscopy, thermal analysis, and X-ray photoelectron spectroscopy. Organic surfactants interacted with montmorillonite by electrostatic attraction. The arrangements of organic surfactants depended on the number of long alkyl chains and the geometrical shape of organic cations. In addition to the thermal stability of surfactants, intermolecular interaction also improved the thermal stability of OMnt/oil fluids. A tight paraffin-type bilayer arrangement contributed to the excellent rheological properties and thermal stability of OMnt/oil fluids. The deterioration of rheological properties of OMnt/oil fluids at temperatures up to 200°C was due mainly to the release of interlayer surfactants into the oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bergaya, F., Jaber, M., & Lambert, J. F. (2012). Clays and Clay Minerals as Layered Nanofillers for (Bio)polymers (pp. 41–75). London: Springer.

    Google Scholar 

  • Bertuoli, P. T., Piazza, D., Scienza, L. C., & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 46–51.

    Article  Google Scholar 

  • Bowen, J. P., Pathiaseril, A., Profeta, S., Jr., & Allinger, N. L. (1987). New molecular mechanics (MM2) parameters for ketones and aldehydes. The Journal of Organic Chemistry, 52(23), 5162–5166.

    Article  Google Scholar 

  • Brigatti, M. F., Galán, E., & Theng, B. K. G. (2013). Structures and mineralogy of clay minerals. In F. Bergaya & G. Lagaly (Eds.), Developments in Clay Science (Vol. 5, pp. 21–81). Netherlands: Elesvier.

  • Caenn, R. & Chillingar, G. V. (1996). Drilling fluids: State of the art. Journal of Petroleum Science and Engineering, 14, 221–230.

    Article  Google Scholar 

  • Caenn, R., Darley, H. C., & Gray, G. R. (2011). Composition and properties of drilling and completion fluids. Houston: Gulf professional publishing.

    Google Scholar 

  • Chen, D., Zhu, J. X., Yuan, P., & Yang, S. J. (2008). Preparation and characterization of anion-cation surfactants modified montmorillonite. Journal of Thermal Analysis and Calorimetry, 94, 841–848.

    Article  Google Scholar 

  • Dino, D., & Thompson, J. (2002). U.S. patent no. 6,462,096. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Favre, H., & Lagaly, G. (1991). Organo-bentonites with quaternary alkylammonium ions. Clay Minerals, 26, 19–32.

    Article  Google Scholar 

  • Frantz, E. B. (2014). U.S. patent no. 0,011,712. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Greene-Kelly, R. (1957). The montmorillonite minerals. In R. C. Mackenzie (Ed.), The Differential Thermal Investigation of Clays (pp. 140–164). London: Mineral Society.

    Google Scholar 

  • Guégan, R., Giovanela, M., Warmont, F., & Motelica-Heino, M. (2015). Nonionic organoclay: A ‘swiss army knife’ for the adsorption of organic micro-pollutants? Journal of Colloid and Interface Science, 437, 71–79.

    Article  Google Scholar 

  • Gunawan, N. S., Indraswati, N., Ju, Y. H., Soetaredjo, F. E., Ayucitra, A., & Ismadji, S. (2010). Bentonites modified with anionic and cationic surfactants for bleaching of crude palm oil. Applied Clay Science, 47, 462–464.

    Article  Google Scholar 

  • He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., & Frost, R. L. (2005). Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53, s319.

    Article  Google Scholar 

  • He, H., Zhou, Q., Frost, R. L., Wood, B. J., Duong, L. V., & Kloprogge, J. T. (2007). An X-ray photoelectron spectroscopy study of HDTMAB distribution within organoclays. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 66, 1180–1188.

  • He, H., Ma, Y., Zhu, J., Yuan, P., & Qing, Y. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 67–72.

    Article  Google Scholar 

  • Hedley, C. B., Yuan, G., & Theng, B. K. G. (2007). Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Applied Clay Science, 35, 180–188.

    Article  Google Scholar 

  • Hermoso, J., Martinez-Boza, F., & Gallegos, C. (2014). Influence of viscosity modifier nature and concentration on the viscous flow behavior of oil-based drilling fluids at high pressure. Applied Clay Science, 87, 14–21.

    Article  Google Scholar 

  • Hermoso, J., Martinez-Boza, F., & Gallegos, C. (2015). Influence of aqueous phase volume fraction, organoclay concentration and pressure on invert-emulsion oil muds rheology. Journal of Industrial and Engineering Chemistry, 22, 341–349.

    Article  Google Scholar 

  • Hermoso, J., Martínez-Boza, F. J., & Gallegos, C. (2017). Organoclay influence on high pressure-high temperature volumetric properties of oil-based drilling fluids. Journal of Petroleum Science and Engineering, 151, 13–23.

    Article  Google Scholar 

  • Jaber, M., Miehé-Brendlé, J., & Dred, R. L. (2002). Mercaptopropyl Al-Mg phyllosilicate: Synthesis and characterization by XRD, IR, and NMR. Chemistry Letters, 80, 954–955.

    Article  Google Scholar 

  • Jaber, M., Georgelin, T., Bazzi, H., Costatorro, F., & Clodic, G. (2014). Selectivities in adsorption and peptidic condensation in the (arginine and glutamic acid)/montmorillonite clay system. Journal of Physical Chemistry C, 118, 25447–25455.

    Article  Google Scholar 

  • Khodja, M., Canselier, J. P., Bergaya, F., Fourar, K., Khodja, M., Cohaut, N., & Benmounah, A. (2010). Shale problems and water-based drilling fluid optimisation in the hassi messaoud algerian oil field. Applied Clay Science, 49, 383–393.

    Article  Google Scholar 

  • Kogure, T. (2013). Electron microscopy. In F. Bergaya & G. Lagaly (Eds.), Developments in Clay Science (pp. 275–317, Vol. 5). Netherlands: Elsevier.

  • Lagaly, G. (1976). Kink-block and gauche-block structures of bimolecular films. Angewandte Chemie International Edition, 15, 575–586.

    Article  Google Scholar 

  • Lagaly, G. (1981). Characterization of clays by organic compounds. Clay Minerals, 16(1), 1–21.

    Article  Google Scholar 

  • Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 43–51.

    Article  Google Scholar 

  • Lagaly, G., Ogawa, M., & Dékány, I. (2013) Clay mineral–organic interactions. In F. Bergaya, B.K.G. Theng, and G. Lagaly (Eds.) Developments in Clay Science, (pp. 435–505, vol. 5). Amsterdam; Elsevier.

  • Lee, S.M. and Tiwari, D. (2012) Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59–60, 84–102.

  • Paiva, L. B. D., Morales, A. R., & Díaz, F. R. V. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8–24.

    Article  Google Scholar 

  • Ratkievicius, L. A., Da Cunha Filho, F. J. V., Neto, E. L. D. B., & Santanna, V. C. (2017). Modification of bentonite clay by a cationic surfactant to be used as a viscosity enhancer in vegetable-oil-based drilling fluid. Applied Clay Science, 135, 307–312.

    Article  Google Scholar 

  • Sarier, N., Onder, E., & Ersoy, S. (2010). The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 371, 40–49.

  • Schampera, B., Solc, R., Woche, S. K., Mikutta, R., Dultz, S., Guggenberger, G., & Tunega, D. (2015). Surface structure of organoclays as examined by X-ray photoelectron spectroscopy and molecular dynamics simulations. Clay Minerals, 50, 353–367.

  • Shen, Y. H. (2001). Preparations of organobentonite using nonionic surfactants. Chemosphere, 44, 989–995.

    Article  Google Scholar 

  • Vaia, R. A., Teukolsky, R. K., & Giannelis, E. P. (1994). Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 1017–1022.

    Article  Google Scholar 

  • Wu, S., Zhang, Z., Wang, Y., Liao, L., & Zhang, J. (2014). Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites. Materials Research Bulletin, 59, 59–64.

    Article  Google Scholar 

  • Zhang, Z., Liao, L., & Xia, Z. (2010). Ultrasound-assisted preparation and characterization of anionic surfactant modified montmorillonites. Applied Clay Science, 50, 576–581.

    Article  Google Scholar 

  • Zhang, Z., Zhang, J., Liao, L., & Xia, Z. (2013). Synergistic effect of cationic and anionic surfactants for the modification of Ca-montmorillonite. Materials Research Bulletin, 48, 1811–1816.

    Article  Google Scholar 

  • Zhu, J., Qing, Y., Wang, T., Zhu, R., Wei, J., Tao, Q., Yuan, P., & He, H. (2011). Preparation and characterization of zwitterionic surfactant-modified montmorillonites. Journal of Colloid and Interface Science, 360, 386–392.

    Article  Google Scholar 

  • Zhuang, G., Zhang, Z., Guo, J., Liao, L., & Zhao, J. (2015). A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Applied Clay Science, 104, 18–26.

    Article  Google Scholar 

  • Zhuang, G., Zhang, Z., Sun, J., & Liao, L. (2016). The structure and rheology of organo-montmorillonite in oil-based system aged under different temperatures. Applied Clay Science, 124, 21–30.

    Article  Google Scholar 

  • Zhuang, G., Zhang, H., Wu, H., Zhang, Z., & Liao, L. (2017a). Influence of the surfactants' nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 135, 244–252.

    Article  Google Scholar 

  • Zhuang, G., Zhang, Z., Gao, J., Zhang, X., & Liao, L. (2017b). Influences of surfactants on the structures and properties of organo-palygorskite in oil-based drilling fluids. Microporous and Mesoporous Materials, 244, 37–46.

    Article  Google Scholar 

  • Zhuang, G., Zhang, Z., Jaber, M., Gao, J., & Peng, S. (2017c). Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids. Journal of Industrial and Engineering Chemistry, 56, 248–257.

    Article  Google Scholar 

  • Zhuang, G., Gao, J., Chen, H., & Zhang, Z. (2018). A new one-step method for physical purification and organic modification of sepiolite. Applied Clay Science, 153, 1–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Fundamental Research Funds for Central Universities (China). The support provided by the China Scholarship Council (CSC) during the visit of Guanzheng Zhuang (No. 201706400010) to Sorbonne Université is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zepeng Zhang or Maguy Jaber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, G., Zhang, Z., Peng, S. et al. The Interaction between Surfactants and Montmorillonite and its Influence on the Properties of Organo-Montmorillonite in Oil-Based Drilling FluIDS. Clays Clay Miner. 67, 190–208 (2019). https://doi.org/10.1007/s42860-019-00017-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-00017-0

Keywords

Navigation