Skip to main content

Advertisement

Log in

Improved Decoupling Control Strategy of MMC-HVDC System Connected to the Weak AC Power Grid

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

In order to make full use of the regulation capabilities and avoid energy loss caused by coupling effect, a mathematical model of MMC-HVDC system was deduced. Subsequently, the coupling mechanism between the AC current and stations of the MMC system were analyzed via nonlinear equation. On the basis of mechanism analysis, the effects of inter-coupling in MMC-HVDC system connected to weak AC power grid were weakened by adding the dynamic feedforward compensation into the control system. In addition, to ensure the system stability and improve dynamic performance of the proposed controller, the control parameters design method was proposed based on the Hurwitz criterion and the time-domain mathematical calculations. By combining the two parts of the control system, an improved decoupling control strategy applicable to MMC system was proposed. Taking MMC-HVDC system as an example, the simulation based on PSCAD/ EMTDC verified the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li B, Liang Y, Wang G, Li H, Ding J (2020) A control strategy for soft open points based on adaptive voltage droop outer-loop control and sliding mode inner-loop control with feedback linearization. Int J Electr Power Energy Syst 122:106205

    Article  Google Scholar 

  2. Malinowski M, Gopakumar K, Rodriguez J, Perez MA (2009) A survey on cascaded multilevel inverters. IEEE Trans Industr Electron 57(7):2197–2206

    Article  Google Scholar 

  3. Wang L, Xu J, Wang G, Zhang Z (2018) Lifetime estimation of IGBT modules for MMC-HVDC application. Microelectron Reliab 82:90–99

    Article  Google Scholar 

  4. Xu J, Wang L, Li Y, Zhang Z, Wang G, Hong C (2019) A unified MMC reliability evaluation based on physics-of-failure and SM lifetime correlation. Int J Electr Power Energy Syst 106:158–168

    Article  Google Scholar 

  5. Zhao Z, Iravani MR (1994) Application of GTO voltage source inverter in a hybrid HVDC link. IEEE Trans Power Deliv 9(1):369–377

    Article  Google Scholar 

  6. Li C, Zhan P, Wen J, Yao M, Li N, Lee WJ (2013) Offshore wind farm integration and frequency support control utilizing hybrid multiterminal HVDC transmission. IEEE Trans Ind Appl 50(4):2788–2797

    Article  Google Scholar 

  7. Givaki K, Rahman MH, Vozikis D, Giveki A (2019) Analysis of integration of multi-terminal HVDC network to weak grids. J Eng 2019(16):3219–3224

    Article  Google Scholar 

  8. Zhang L, Harnefors L, Nee HP (2009) Power-synchronization control of grid-connected voltage-source converters. IEEE Trans Power Syst 25(2):809–820

    Article  Google Scholar 

  9. Dai, K., Liu, P., Kang, Y., Chen, J. (2001). Decoupling current control for voltage source converter in synchronous roating frame. In 4th IEEE International Conference on Power Electronics and Drive Systems. In: IEEE PEDS 2001-Indonesia. Proceedings (Cat. No. 01TH8594) (Vol. 1, pp. 39–43). IEEE.

  10. Guo C, Liu W, Zhao C, Ni X (2018) Small-signal dynamics and control parameters optimization of hybrid multi-infeed HVDC system. Int J Electr Power Energy Syst 98:409–418

    Article  Google Scholar 

  11. Wang J, Wang P (2018) Power decoupling control for modular multilevel converter. IEEE Trans Power Electron 33(11):9296–9309

    Article  Google Scholar 

  12. Riar BS, Geyer T, Madawala UK (2014) Model predictive direct current control of modular multilevel converters: Modeling, analysis, and experimental evaluation. IEEE Trans Power Electron 30(1):431–439

    Article  Google Scholar 

  13. Gong Z, Dai P, Yuan X, Wu X, Guo G (2015) Design and experimental evaluation of fast model predictive control for modular multilevel converters. IEEE Trans Industr Electron 63(6):3845–3856

    Article  Google Scholar 

  14. Mahmoudi H, Aleenejad M, Ahmadi R (2017) Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans Power Deliv 33(5):2115–2124

    Article  Google Scholar 

  15. Li Z, Hao Q, Gao F, Wu L, Guan M (2018) Nonlinear decoupling control of two-terminal MMC-HVDC based on feedback linearization. IEEE Trans Power Deliv 34(1):376–386

    Article  Google Scholar 

  16. Jain S, Shadmand MB, Balog RS (2018) Decoupled active and reactive power predictive control for PV applications using a grid-tied quasi-Z-source inverter. IEEE J Emerg Sel Top Power Electron 6(4):1769–1782

    Article  Google Scholar 

  17. Zhang, D., Ambikairajah, E. (2015). De-coupled PQ control for operation of islanded microgrid. In: 2015 Australasian Universities Power Engineering Conference (AUPEC) (pp. 1–6). IEEE.

  18. Monica, P., Kowsalya, M., Subramanian, K. (2017). Droop reference based decoupling coupling control of NPC inverter for islanded microgrid. In: 2017 Innovations in power and advanced computing technologies (i-PACT) (pp. 1–5). IEEE.

  19. Yao W, Chen M, Matas J, Guerrero JM, Qian ZM (2010) Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans Industr Electron 58(2):576–588

    Article  Google Scholar 

  20. Arani MFM, Mohamed YARI (2016) Analysis and performance enhancement of vector-controlled VSC in HVDC links connected to very weak grids. IEEE Trans Power Syst 32(1):684–693

    Article  Google Scholar 

  21. Li B, Liang Y, Wang G, Li H, Chen X (2020) A control parameter design method for hybrid multi-terminal HVDC system. IEEE Access 8:18669–18680

    Article  Google Scholar 

  22. Jiang J, Liu F, Pan S, Zha X, Liu W, Chen C, Hao L (2019) A conservatism-free large signal stability analysis method for DC microgrid based on mixed potential theory. IEEE Trans Power Electron 34(11):11342–11351

    Article  Google Scholar 

  23. Li T, Gole AM, Zhao C (2016) Harmonic instability in MMC-HVDC converters resulting from internal dynamics. IEEE Trans Power Deliv 31(4):1738–1747

    Article  Google Scholar 

  24. Harnefors L, Antonopoulos A, Norrga S, Angquist L, Nee HP (2012) Dynamic analysis of modular multilevel converters. IEEE Trans Industr Electron 60(7):2526–2537

    Article  Google Scholar 

  25. Jiang, H., Joós, G., Ooi, B. T. (2014). Analytical tool for designing MMC parameters to improve damping of transients. In: 2014 IEEE PES General meeting| conference & exposition (pp. 1–4). IEEE

  26. Daryabak M, Filizadeh S, Jatskevich J, Davoudi A, Saeedifard M, Sood VK, Mehrizi-Sani A (2014) Modeling of LCC-HVDC systems using dynamic phasors. IEEE Trans Power Deliv 29(4):1989–1998

    Article  Google Scholar 

  27. Givaki K, Chen D, Anaya-Lara O (2016) Stability studies of different AC collection network topologies in wind farms connected to weak grids. In: 5th IET international conference on renewable power generation. IET, GBR

  28. Zhao S, Shao B (2019) An analytical method suitable for revealing the instability mechanism of power electronics dominated power systems. Int J Electr Power Energy Syst 109:269–282

    Article  Google Scholar 

  29. Wang Y, Guo C, Zhao C (2018) A novel supplementary frequency-based dual damping control for VSC-HVDC system under weak AC grid. Int J Electr Power Energy Syst 103:212–223

    Article  Google Scholar 

  30. Kouhi Y, Bajcinca N, Raisch J, Shorten R (2014) On the quadratic stability of switched linear systems associated with symmetric transfer function matrices. Automatica 50(11):2872–2879

    Article  MathSciNet  Google Scholar 

  31. Chen X, Liang Y, Wang G, Li H, Li B, Guo Z (2020) A control parameter analysis method based on a transfer function matrix of hybrid multi-terminal HVDC system with flexible adaptability for different operation modes. Int J Electr Power Energy Syst 116:105584

    Article  Google Scholar 

  32. Nakra BC (2005) Theory and applications of automatic controls. New Age International, Delhi

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 51577072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingkun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The differential equations for the dynamics of SM capacitors is expressed as follow:

$$du_{C\_dc} /dt = \frac{1}{{6C_{m} }} \cdot I_{dc} + \frac{{u_{sq} i_{sq} }}{{4C_{m} U_{dc} }} + \frac{{u_{sd} i_{sd} }}{{4C_{m} U_{dc} }} + \frac{{u_{cirq} i_{cirq} }}{{2C_{m} U_{dc} }} + \frac{{u_{cird} i_{cird} }}{{2C_{m} U_{dc} }}$$
(32)

The fundamental frequency components of the AC fluctuation are expressed as

$$\left\{ \begin{aligned} du_{C\_ac1d} /dt & = - \omega u_{C\_ac1q} - \frac{1}{{4C_{m} }}i_{sd} - \frac{{I_{dc} u_{sd} }}{{3C_{m} U_{dc} }} - \frac{{u_{sq} i_{cirq} }}{{2C_{m} U_{dc} }} - \frac{{u_{sd} i_{cird} }}{{2C_{m} U_{dc} }} \\ & \quad - \frac{{u_{cirq} i_{sq} }}{{4C_{m} U_{dc} }} - \frac{{u_{cird} i_{sd} }}{{4C_{m} U_{dc} }} \\ du_{C\_ac1q} /dt & = \omega u_{C\_ac1d} - \frac{1}{{4C_{m} }}i_{sq} - \frac{{I_{dc} u_{sq} }}{{3C_{m} U_{dc} }} - \frac{{u_{sd} i_{cirq} }}{{2C_{m} U_{dc} }} - \frac{{u_{sq} i_{cird} }}{{2C_{m} U_{dc} }} \\ & \quad - \frac{{u_{cirq} i_{sd} }}{{4C_{m} U_{dc} }} - \frac{{u_{cird} i_{sq} }}{{4C_{m} U_{dc} }} \\ \end{aligned} \right.$$
(33)

The double frequency components of the AC fluctuation are expressed as

$$\left\{ \begin{gathered} du_{C\_ac2d} /dt = - \omega u_{C\_ac2q} + \frac{1}{{2C_{m} }}i_{cird} + \frac{{I_{dc} u_{cird} }}{{3C_{m} U_{dc} }} - \frac{{u_{sq} i_{sq} }}{{4C_{m} U_{dc} }} + \frac{{u_{sd} i_{sd} }}{{4C_{m} U_{dc} }} \hfill \\ du_{C\_ac2q} /dt = \omega u_{C\_ac2d} + \frac{1}{{2C_{m} }}i_{cirq} + \frac{{I_{dc} u_{cirq} }}{{3C_{m} U_{dc} }} + \frac{{u_{sd} i_{sq} }}{{4C_{m} U_{dc} }} + \frac{{u_{sq} i_{sd} }}{{4C_{m} U_{dc} }} \hfill \\ \end{gathered} \right.$$
(34)

The triple frequency components of the AC fluctuation are expressed as

$$\left\{ \begin{gathered} du_{C\_ac3x} /dt = 3\omega u_{C\_ac3y} - \frac{{i_{cirq} u_{sd} }}{{2C_{m} U_{dc} }} - \frac{{u_{sq} i_{cird} }}{{2C_{m} U_{dc} }} - \frac{{u_{cird} i_{sq} }}{{4C_{m} U_{dc} }} - \frac{{u_{cirq} i_{sd} }}{{4C_{m} U_{dc} }} \hfill \\ du_{C\_ac3y} /dt = - 3\omega u_{C\_ac3x} - \frac{{i_{cirq} u_{sq} }}{{2C_{m} U_{dc} }} - \frac{{u_{sd} i_{cird} }}{{2C_{m} U_{dc} }} - \frac{{u_{cirq} i_{sq} }}{{4C_{m} U_{dc} }} - \frac{{u_{cird} i_{sd} }}{{4C_{m} U_{dc} }} \hfill \\ \end{gathered} \right.$$
(35)

And the differential equations of circulating currents are

$$\left\{ \begin{aligned} di_{cird} /dt & = - 2\omega i_{cirq} - \frac{{Nu_{C\_ac2d} }}{{2L_{arm} }} - \frac{{Nu_{C\_dc} i_{cird} }}{{U_{dc} L_{arm} }} - \frac{{R_{arm} }}{{L_{arm} }}i_{cird} \\ & \quad + N\frac{{u_{C\_ac1d} u_{sd} - u_{sq} u_{C\_ac1q} }}{{2U_{dc} L_{arm} }} + N\frac{{u_{C\_ac3x} u_{sq} - u_{sd} u_{C\_ac3y} }}{{2U_{dc} L_{arm} }} \\ di_{cirq} /dt & = 2\omega i_{cird} - \frac{{Nu_{C\_ac2q} }}{{2L_{arm} }} - \frac{{Nu_{C\_dc} i_{cirq} }}{{U_{dc} L_{arm} }} - \frac{{R_{arm} }}{{L_{arm} }}i_{cirq} \\ & \quad + N\frac{{u_{C\_ac1q} u_{sd} - u_{sq} u_{C\_ac1d} }}{{2U_{dc} L_{arm} }} + N\frac{{u_{C\_ac3x} u_{sq} - u_{sd} u_{C\_ac3y} }}{{2U_{dc} L_{arm} }} \\ \end{aligned} \right.$$
(36)

where Leq = LT + Larm/2 is the AC system equivalent impedance; Req = RT + Rarm/2 is the AC system equivalent resistance.

If the MMC station adopts the active power/reactive power control mode with the conventional strategy, the mathematical association model can be derived as

$$\left\{ \begin{gathered} x_{1} = \int {(P_{ref} - \frac{3}{2}u_{sd} i_{sd} - \frac{3}{2}u_{sq} i_{sq} )dt} \hfill \\ x_{2} = \int {(Q_{ref} - \frac{3}{2}u_{sd} i_{sq} + \frac{3}{2}u_{sq} i_{sd} )dt} \hfill \\ i_{sdref} = k_{p1} (P_{ref} - \frac{3}{2}u_{sd} i_{sd} - \frac{3}{2}u_{sq} i_{sq} ) + k_{i1} x_{1} \hfill \\ i_{sqref} = k_{p2} (Q_{ref} - \frac{3}{2}u_{sd} i_{sq} + \frac{3}{2}u_{sq} i_{sd} ) + k_{i1} x_{2} \hfill \\ x_{3} = \int {(i_{sdref} - i_{sd} )dt} \hfill \\ x_{4} = \int {(i_{sqref} - i_{sq} )dt} \hfill \\ u_{cdref} = u_{sdm} - \omega L_{eq} i_{sq} - k_{i3} x_{3} - k_{p3} (i_{sdref} - i_{sdm} ) \hfill \\ u_{cqref} = u_{sqm} + \omega L_{eq} i_{sd} - k_{i4} x_{4} - k_{p4} (i_{sqref} - i_{sqm} ) \hfill \\ \end{gathered} \right.$$
(37)

When the MMC station adopts the proposed control strategy, the mathematical association model can be derived as

$$\left\{ \begin{gathered} x_{1} = \int {(P_{ref} - \frac{3}{2}u_{sd} i_{sd} - \frac{3}{2}u_{sq} i_{sq} )dt} \hfill \\ x_{2} = \int {(Q_{ref} - \frac{3}{2}u_{sd} i_{sq} + \frac{3}{2}u_{sq} i_{sd} )dt} \hfill \\ i_{sdref} = k_{p1} [P_{ref} - \frac{3}{2}u_{sd} i_{sd} - \frac{3}{2}u_{sq} i_{sq} - G_{fc2} \cdot \Delta Q] + k_{i1} x_{1} \hfill \\ i_{sqref} = k_{p2} [Q_{ref} - \frac{3}{2}u_{sd} i_{sq} + \frac{3}{2}u_{sq} i_{sd} - G_{fc1} \cdot \Delta P] + k_{i1} x_{2} \hfill \\ x_{3} = \int {(i_{sdref} - i_{sd} )dt} \hfill \\ x_{4} = \int {(i_{sqref} - i_{sq} )dt} \hfill \\ u_{cdref} = u_{sdm} - \omega L_{eq} i_{sq} - k_{i3} x_{3} - k_{p3} (i_{sdref} - i_{sdm} ) + G_{fc3} \cdot \Delta U_{dc} \hfill \\ u_{cqref} = u_{sqm} + \omega L_{eq} i_{sd} - k_{i4} x_{4} - k_{p4} (i_{sqref} - i_{sqm} ) + G_{fc4} \cdot \Delta U_{dc} \hfill \\ \end{gathered} \right.$$
(38)

From Fig. 7, the circulation suppression controller, is expressed in d-q coordinates as

$$\left\{ \begin{gathered} x_{5} = \int {(i_{cirdref} - i_{cird} )dt} \hfill \\ x_{6} = \int {(i_{cirqref} - i_{cirq} )dt} \hfill \\ u_{cird} = - 2\omega L_{arm} i_{cird} - k_{icir} x_{5} - k_{pcir} (i_{cirdref} - i_{cird} ) \hfill \\ u_{cirq} = 2\omega L_{arm} i_{cirq} - k_{icir} x_{6} - k_{pcir} (i_{cirqref} - i_{cirq} ) \hfill \\ \end{gathered} \right.$$
(39)

The DC line is an equivalent circuit of π type, as shown in Fig. 

Fig. 13
figure 13

π-type equivalent of DC line

13.

The current on a DC line can be represented as

$$L_{d} \frac{{dI_{dc} }}{dt} = U_{dc1} - U_{dc2} - R_{d} I_{dc}$$
(40)

where Ceq = 6*Cm/N; Rd and Ld are the equivalent resistance and inductance of the DC line between node station 1 and station 2; Idc represents the DC current.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, H. & Wang, G. Improved Decoupling Control Strategy of MMC-HVDC System Connected to the Weak AC Power Grid. J. Electr. Eng. Technol. 17, 819–833 (2022). https://doi.org/10.1007/s42835-021-00945-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-021-00945-9

Keywords

Navigation