Skip to main content
Log in

Review of Plasma Surface Engineering Technology Toward Sustainable Textile Materials

  • Review
  • Published:
Materials Circular Economy Aims and scope Submit manuscript

Abstract

Plasma surface engineering is a sustainable alternative to water and chemical processing of textile materials. It involves exposing textile materials to energetic gas particles or plasmas that enhance surface properties and improve functionality. This allows for efficient surface modification, leading to increased productivity and enhanced performance of textiles with properties such as wettability, adhesion, and antimicrobial activity. This review discusses advanced plasma surface engineering in the textile industry. First, it introduces the reader to the various reactions and mechanisms of plasma treatments on textiles. This is followed by an account of the factors affecting plasma treatments of textile surfaces including textile substrate, operating conditions, and setup. Then, the review further details the various textile processes where plasma treatment is currently utilized. Finally, the future potential and critical innovations in plasma surface engineering for the textile industry are coined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced from Sandanuwan et al. (2021), Copyright 2021 Elsevier Ltd

Fig. 7
Fig. 8
Fig. 9
Fig. 10

Reproduced with permission from Kim et al. (2022), Copyright 2021 published by Elsevier B.V. b The 3D AFM images of polystyrene. With permission from Bîrleanu et al. (2023), Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)

Fig. 11

Reproduced with permission from Attar et al. (2022), Copyright 2022 published by Elsevier Ltd. c Aramid yarn plasma surface engineered with argon/acetone atmospheric pressure plasma. With permission from Sohbatzadeh et al. (2023), Copyright 2022 published by Elsevier Ltd

Similar content being viewed by others

Data Availability

Additional information or data used during this study will be availed to the Journal of Material’s Circular Economy by the corresponding author upon request.

References

  • Abdelghaffar F, Abdelghaffar RA, Rashed UM, Ahmed HM (2020) Highly effective surface modification using plasma technologies toward green coloration of polyester fabrics. Environ Sci Pollut Res Int 27(23):28949–28961. https://doi.org/10.1007/s11356-020-09081-9

    Article  CAS  PubMed  Google Scholar 

  • Adane T, Adugna AT, Alemayehu E, Rehman R (2021) Textile industry effluent treatment techniques. J Chem 2021:1–14. https://doi.org/10.1155/2021/5314404

    Article  CAS  Google Scholar 

  • Ahmad M, Silva SRP (2020) Low temperature growth of carbon nanotubes—a review. Carbon 158:24–44

    Article  CAS  Google Scholar 

  • Aktas C, Polat O, Beitollahpoor M, Farzam M, Pesika NS, Sahiner N (2023) Force-based characterization of the wetting properties of LDPE surfaces treated with CF4 and H2 plasmas. Polymers 15(9):2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Bataineh SA, Cavallaro AA, Michelmore A, Macgregor MN, Whittle JD, Vasilev K (2019) Deposition of 2-oxazoline-based plasma polymer coatings using atmospheric pressure helium plasma jet. Plasma Processes Polym 16(10):1900104

    Article  Google Scholar 

  • AlQahtani MS, Wang X, Knecht SD, Bilén SG, Song C (2021) Plasma-enhanced catalytic reduction of SO2: decoupling plasma-induced surface reaction from plasma-phase reaction. Appl Catal B 286:119852

    Article  CAS  Google Scholar 

  • Amani H, Arzaghi H, Bayandori M, Dezfuli AS, Pazoki-Toroudi H, Shafiee A, Moradi L (2019) Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces 6(13):1900572

    Article  Google Scholar 

  • Amirabadi S, Milani JM, Sohbatzadeh F (2020) Application of dielectric barrier discharge plasma to hydrophobically modification of gum arabic with enhanced surface properties. Food Hydrocolloids 104:105724

    Article  CAS  Google Scholar 

  • Andreev S, Bogdankevich I, Gusein-zade N, Ul’yanov D (2023) Effect of the plasma density on the generation efficiency and changes in the spectrum of a plasma relativistic microwave generator. Plasma Physics Reports 49(2):245–253

    Article  Google Scholar 

  • Anjum AS, Ali M, Sun KC, Riaz R, Jeong SH (2020) Self-assembled nanomanipulation of silica nanoparticles enable mechanochemically robust super hydrophobic and oleophilic textile. J Colloid Interface Sci 563:62–73

    Article  CAS  PubMed  Google Scholar 

  • Attar RM, Alshareef M, Snari RM, Alaysuy O, Aldawsari AM, Abu-Melha S, El-Metwaly NM (2022) Development of novel photoluminescent fibers from recycled polyester waste using plasma-assisted dyeing toward ultraviolet sensing and protective textiles. J Market Res 21:1630–1642

    CAS  Google Scholar 

  • Azeem M, Javed A, Morikawa H, Noman MT, Khan MQ, Shahid M, Wiener J (2021) Hydrophilization of polyester textiles by nonthermal plasma. Autex Res J 21(2):142–149

    Article  CAS  Google Scholar 

  • Bailey K, Basu A, Sharma S (2022) The environmental impacts of fast fashion on water quality: a systematic review. Water 14(7). https://doi.org/10.3390/w14071073

  • Bandi M, Ishizu N, Kang H-B (2021) Electrocharging face masks with corona discharge treatment. Proc Royal Soc A 477(2251):20210062

    Article  CAS  Google Scholar 

  • Banea MD, Neto JS, Cavalcanti DK (2021) Recent trends in surface modification of natural fibres for their use in green composites. In: Green composites, pp 329–350. https://doi.org/10.1007/978-981-15-9643-8_12

  • Baniya HB, Guragain RP, Subedi DP (2021) Cold atmospheric pressure plasma technology for modifying polymers to enhance adhesion: a critical review. Prog Adhes Adhes 6:841–879

    Article  Google Scholar 

  • Berge G (1969) Landau damping in a plasma. https://doi.org/10.13140/RG.2.2.10825.65126

  • Bîrleanu E, Mihăilă I, Topală I, Borcia C, Borcia G (2023) Adhesion properties and stability of non-polar polymers treated by air atmospheric-pressure plasma. Polymers 15(11):2443

    Article  PubMed  PubMed Central  Google Scholar 

  • Bismarck A, Brostow W, Chiu R, Hagg Lobland HE, Ho KKC (2008) Effects of surface plasma treatment on tribology of thermoplastic polymers. Polym Eng Sci 48(10):1971–1976. https://doi.org/10.1002/pen.21103

    Article  CAS  Google Scholar 

  • Bitzer DL, Slottow H (1966) The plasma display panel: a digitally addressable display with inherent memory. Proceedings of the November 7–10, 1966, fall joint computer conference

  • Bonzanini AD, Shao K, Graves DB, Hamaguchi S, Mesbah A (2023) Foundations of machine learning for low-temperature plasmas: methods and case studies. Plasma Sources Sci Technol 32(2):024003

    Article  Google Scholar 

  • Borgioli F, Galvanetto E, Bacci T (2019) Surface modification of austenitic stainless steel by means of low pressure glow-discharge treatments with nitrogen. Coatings 9(10):604

    Article  CAS  Google Scholar 

  • Brovko A, Amzallag O, Adelberg A, Chernyak L, Raja P, Ruzin A (2021) Effects of oxygen plasma treatment on Cd1−xZnxTe material and devices. Nucl Instrum Methods Phys Res, Sect A 1004:165343

    Article  CAS  Google Scholar 

  • Bu Y, Zhang S, Cai Y, Yang Y, Ma S, Huang J, Yang H, Ye D, Zhou Y, Xu W (2019) Fabrication of durable antibacterial and superhydrophobic textiles via in situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles. Cellulose 26:2109–2122

    Article  CAS  Google Scholar 

  • Chakraborty R, Ahmad F (2022) Economical use of water in cotton knit dyeing industries of Bangladesh. J Clean Prod 340:130825

    Article  Google Scholar 

  • Chang Y, Liu F (2023) Review of waterproof breathable membranes: preparation, performance and applications in the textile field. Materials 16(15):5339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Wang Y, Qiu J, Cao J, Zou Y, Wang S, Jia D, Zhou Y (2021a) A facile bioinspired strategy for accelerating water collection enabled by passive radiative cooling and wettability engineering. Mater Des 206:109829

    Article  CAS  Google Scholar 

  • Chen X, Memon HA, Wang Y, Marriam I, Tebyetekerwa M (2021) Circular economy and sustainability of the clothing and textile industry. Mater Circ Econ 3(1). https://doi.org/10.1007/s42824-021-00026-2

  • Chuan L, Zhi L, Pengyu W, Ming Z, Yong Y, Kexun Y (2020) A hybrid approach for corona discharge in needle electrode configuration: in a large-scale space. Plasma Sources Sci Technol 29(4):045011

    Article  Google Scholar 

  • Conde L (2011) An introduction to Langmuir probe diagnostics of plasmas. Dept. Física. ETSI Aeronáut ngenieros Aeronáuticos Universidad Politécnica de Madrid, Madrid, pp 1–28

    Google Scholar 

  • Corbella C, Portal S, Keidar M (2023) Flexible cold atmospheric plasma jet sources. Plasma 6(1):72–88

    Article  CAS  Google Scholar 

  • Dave H, Ledwani L, Nema S (2019) Nonthermal plasma: a promising green technology to improve environmental performance of textile industries. In: The impact and prospects of green chemistry for textile technology (pp 199–249). Elsevier

  • Davesne A-L, Jimenez M, Samyn F, Bourbigot S (2021) Thin coatings for fire protection: an overview of the existing strategies, with an emphasis on layer-by-layer surface treatments and promising new solutions. Prog Org Coat 154:106217

    Article  CAS  Google Scholar 

  • de Azevedo AR, Cruz AS, Marvila MT, de Oliveira LB, Monteiro SN, Vieira CMF, Fediuk R, Timokhin R, Vatin N, Daironas M (2021) Natural fibers as an alternative to synthetic fibers in reinforcement of geopolymer matrices: a comparative review. Polymers 13(15):2493

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Neto GC, da Silva PC, Tucci HNP, Amorim M (2021) Reuse of water and materials as a cleaner production practice in the textile industry contributing to blue economy. J Clean Prod 305:127075

    Article  Google Scholar 

  • Demaude A, Inturri R, Satriano C, Leroy P, Reniers F (2021) Tuning the wicking and wettability properties of PET textiles by DBD or a remote atmospheric RF torch: a comparison. Plasma Processes Polym 18(6):2100005

    Article  CAS  Google Scholar 

  • Deogaonkar-Baride S, Palaskar SS (2022) Atmospheric pressure plasma treatment for enhancing the conducting properties of polypyrrole coated nylon fabric. J Appl Polym Sci 139(26):e52443

    Article  CAS  Google Scholar 

  • Di Meo S, Venditti P (2020) Evolution of the knowledge of free radicals and other oxidants. Oxidative Medicine and Cellular Longevity 2020

  • Domonkos M, Tichá P, Trejbal J, Demo P (2021) Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl Sci 11(11):4809

    Article  CAS  Google Scholar 

  • Dufay M, Jimenez M, Degoutin S (2020) Effect of cold plasma treatment on electrospun nanofibers properties: a review. ACS Appl Bio Mater 3(8):4696–4716

    Article  CAS  PubMed  Google Scholar 

  • Europlasma (1993) Technology. https://www.europlasma.net/technology.html. Accessed 19 July 2023

  • Fan X, Vautherin B, Planche M-P, Song C, Wen K, Darut G, Feng X, Deng C, Mao J, Liao H (2021) Nitrogen species in a thermal plasma under very low pressure (150 Pa): application to reactive plasma spraying. Ceram Int 47(21):30030–30038. https://doi.org/10.1016/j.ceramint.2021.07.178

    Article  CAS  Google Scholar 

  • Fang C, Zhou Y, Jia L, Yan R (2022) Interfacial properties of multicomponent plasma-modified high-performance fiber-reinforced composites: a review. Polym Compos 43(8):4866–4883

    Article  CAS  Google Scholar 

  • Faraz T, Arts K, Karwal S, Knoops HC, Kessels WM (2019) Energetic ions during plasma-enhanced atomic layer deposition and their role in tailoring material properties. Plasma Sources Sci Technol 28(2):024002

    Article  CAS  Google Scholar 

  • Fattah-Alhosseini A, Molaei M, Babaei K (2020) The effects of nano-and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: a review. Surf Interfaces 21:100659

    Article  CAS  Google Scholar 

  • Gabbar HA, Darda SA, Damideh V, Hassen I, Aboughaly M, Lisi D (2021) Comparative study of atmospheric pressure DC, RF, and microwave thermal plasma torches for waste to energy applications. Sustain Energy Technol Assess 47:101447

    Google Scholar 

  • Gao M, Wang Y, Zhang Y, Li Y, Tang Y, Huang Y (2020) Deposition of thin films on glass fiber fabrics by atmospheric pressure plasma jet. Surf Coat Technol 404:126498

    Article  CAS  Google Scholar 

  • Gasi F, Petraconi G, Bittencourt E, Lourenço SR, Castro AHR, Miranda F d. S, Essiptchouk AM, Nascimento L, Petraconi A, Fraga MA, Pessoa RS (2020) Plasma treatment of polyamide fabric surface by hybrid corona-dielectric barrier discharge: material characterization and dyeing/washing processes. Mater Res 23(1). https://doi.org/10.1590/1980-5373-mr-2019-0255

  • Gasvoda RJ, Zhang Z, Wang S, Hudson EA, Agarwal S (2020) Etch selectivity during plasma-assisted etching of SiO2 and SiNx: transitioning from reactive ion etching to atomic layer etching. J Vacuum Sci Technol A 38(5). https://doi.org/10.1116/6.0000395

  • George A, Shen B, Craven M, Wang Y, Kang D, Wu C, Tu X (2021) A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization. Renew Sustain Energy Rev 135. https://doi.org/10.1016/j.rser.2020.109702

  • Ghobeira R, Esbah Tabaei PS, Morent R, De Geyter N (2022) Chemical characterization of plasma-activated polymeric surfaces via XPS analyses: a review. Surf Interfaces 31. https://doi.org/10.1016/j.surfin.2022.102087

  • Glasser O (1993) Wilhelm Conrad Röntgen and the early history of the Roentgen rays. Norman Publishing

    Google Scholar 

  • Gleissner C, Landsiedel J, Bechtold T, Pham T (2022) Surface activation of high performance polymer fibers: a review. Polym Rev 62(4):757–788

    Article  CAS  Google Scholar 

  • Gorbanev Y, Privat-Maldonado A, Bogaerts A (2018) Analysis of short-lived reactive species in plasma-air-water systems: the dos and the do nots. Anal Chem 90(22):13151–13158. https://doi.org/10.1021/acs.analchem.8b03336

    Article  CAS  PubMed  Google Scholar 

  • Guan W, Kuang Y, Zhang Y (2019) Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma. Plasma Sci Technol 22(1):015404

    Google Scholar 

  • Gupta US, Dhamarikar M, Dharkar A, Chaturvedi S, Kumrawat A, Giri N, Tiwari S, Namdeo R (2021) Plasma modification of natural fiber: a review. Mater Today: Proc 43:451–457

    Google Scholar 

  • Guragain RP, Baniya HB, Dhungana S, Chhetri GK, Gautam S, Pandey BP, Joshi UM, Subedi DP (2021) Improvement of hydrophilicity of polypropylene film by dielectric barrier discharge generated in air at atmospheric pressure. Rev Adhes Adhes 9(1):153–166

    CAS  Google Scholar 

  • Haji A, Naebe M (2020a) Cleaner dyeing of textiles using plasma treatment and natural dyes: a review. J Clean Prod 265:121866

    Article  CAS  Google Scholar 

  • Haji A, Khajeh Mehrizi M, Ali Tavanai M, Gohari M (2021) Water repellent breathable PET/wool fabric via plasma polymerisation technology. TEXTEH Proc 10:78–80

    Google Scholar 

  • Haji A, Naebe M (2020b) Cleaner dyeing of textiles using plasma treatment and natural dyes: a review. J Clean Prod 265. https://doi.org/10.1016/j.jclepro.2020.121866

  • Halepoto H, Gong T, Memon H (2022) Current status and research trends of textile wastewater treatments—a bibliometric-based study. Front Environ Sci 10. https://doi.org/10.3389/fenvs.2022.1042256

  • Han X, Zhang T, Chen W, Dong B, Meng G, Zheng L, Yang C, Sun X, Zhuang Z, Wang D (2021) Mn N4 oxygen reduction electrocatalyst: operando investigation of active sites and high performance in zinc–air battery. Adv Energy Mater 11(6):2002753

    Article  CAS  Google Scholar 

  • Han F, Lang C, Qiu Y (2022) Cleaning behavior based on waste textile before resource conversion and its challenges in China — a comprehensive review. J Clean Prod 370. https://doi.org/10.1016/j.jclepro.2022.133509

  • Hassabo A, El-Sayed E (2021) Recent advances in the application of plasma in textile finishing (a review). J Text Color Polym Sci 0(0):0–0. https://doi.org/10.21608/jtcps.2021.67798.1050

  • Heneral A, Avtaeva S (2020) Atmospheric pressure plasma jets generated by the DBD in argon-air, helium-air, and helium-water vapour mixtures. J Phys D Appl Phys 53(19):195201

    Article  CAS  Google Scholar 

  • Hepner S, Wachs B, Jorns B (2020) Wave-driven non-classical electron transport in a low temperature magnetically expanding plasma. Appl Phys Lett 116(26). https://doi.org/10.1063/5.0012668

  • Hosseini H, Ghaffarzadeh M (2022) Surface functionalization of carbon nanotubes via plasma discharge: a review. Inorg Chem Commun 138. https://doi.org/10.1016/j.inoche.2022.109276

  • Hu M, Xu L, Zhang X, Song Z, Luo S (2022) In-situ Ar plasma treatment as a low thermal budget technique for high performance InGaSnO thin film transistors fabricated using magnetron sputtering. Appl Surf Sci 604:154621

    Article  CAS  Google Scholar 

  • Imran M, Khan M, Javed MA, Ahmad S, Qayyum A (2023) Spectroscopic investigation of atmospheric pressure cold plasma jet produced in dielectric barrier discharge. Curr Appl Phys 50:81–91. https://doi.org/10.1016/j.cap.2023.04.001

    Article  Google Scholar 

  • Ingsel T, Gupta RK (2022) Plasma at the nanoscale: an introduction. In: Plasma at the Nanoscale (pp 1–20). Elsevier

  • Iriyama Y, Yasuda T, Cho DL, Yasuda H (1990) Plasma surface treatment on nylon fabrics by fluorocarbon compounds. J Appl Polym Sci 39(2):249–264. https://doi.org/10.1002/app.1990.070390205

    Article  CAS  Google Scholar 

  • Jabar JM (2021) Antimicrobial functional textiles. Text Funct Appl 209. https://doi.org/10.5772/intechopen.91596

  • Javanmard S, Pouryoussefi SG (2023) Comparison of characteristics of atmospheric pressure plasma jets using argon and helium working gases. Curr Appl Phys 46:61–69. https://doi.org/10.1016/j.cap.2022.12.002

    Article  Google Scholar 

  • Joo Y-H, Jin M-J, Kim SK, Um D-S, Kim C-I (2021) BCl3/Ar plasma etching for the performance enhancement of Al-doped ZnO thin films. Appl Surf Sci 561. https://doi.org/10.1016/j.apsusc.2021.149957

  • Jordens J, Van Doninck B, Satrio NR, Hernández AM, Couckuyt I, Van Nieuwenhuyse I, Witters M (2022) Optimization of plasma-assisted surface treatment for adhesive bonding via artificial intelligence. 2nd International Conference on Industrial Applications of Adhesives 2022: Selected Contributions of IAA 2022

  • Justia (2003) Justia patents search patents europlasma. https://patents.justia.com/search?q=europlasma. Accessed 27 July 2023

  • Kačmáry P, Lörinc N (2023) Possibilities of sale forecasting textile products with a short life cycle. Sustainability 15(21):15517

    Article  Google Scholar 

  • Kalel N, Darpe A, Bijwe J (2021) Low pressure plasma induced surface changes of some stainless steels. Surf Coatings Technol 425. https://doi.org/10.1016/j.surfcoat.2021.127700

  • Kamataki K, Sasaki Y, Nagao I, Yamashita D, Okumura T, Yamashita N, Itagaki N, Koga K, Shiratani M (2023) Low-temperature fabrication of silicon nitride thin films from a SiH4+ N2 gas mixture by controlling SiNx nanoparticle growth in multi-hollow remote plasma chemical vapor deposition. Mater Sci Semicond Process 164:107613

    Article  CAS  Google Scholar 

  • Kang L, Wang B, Zeng J, Cheng Z, Li J, Xu J, Gao W, Chen K (2020) Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation. Green Chem 22(2):504–512

    Article  CAS  Google Scholar 

  • Karunarathne T, Sandaruwan C, Wijesinghe W, Karalasignham A, Abdelkader AM, Amaratunga G, de Silva S (2022) Development of universal fabric dyeing and adhesion through RF glow discharge plasma treatment. Vacuum 204:111394

    Article  CAS  Google Scholar 

  • Kaseem M, Fatimah S, Nashrah N, Ko YG (2021) Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. Prog Mater Sci 117. https://doi.org/10.1016/j.pmatsci.2020.100735

  • Katouah H, El-Metwaly NM (2021) Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. React Funct Polym 159:104810

    Article  CAS  Google Scholar 

  • Khan WU, Ahmed S, Dhoble Y, Madhav S (2023) A critical review of hazardous waste generation from textile industries and associated ecological impacts. J Indian Chem Soc 100(1). https://doi.org/10.1016/j.jics.2022.100829

  • Khatabi H, Bidoki SM, Haji A (2022) A green approach for In-situ synthesis of silver nanoparticles on cotton fabric by low pressure cold plasma. Mater Chem Phys 290. https://doi.org/10.1016/j.matchemphys.2022.126548

  • Kim S, Oh J-H, Park CH (2020) Development of energy-efficient superhydrophobic polypropylene fabric by oxygen plasma etching and thermal aging. Polymers 12(11):2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Han J, Mauchauffé R, Kim J, Moon SY (2022) Antithetic superhydrophobic/superhydrophilic surfaces formation by simple gas switching in an atmospheric-pressure cold plasma treatment. Mater Chem Phys 277:125482

    Article  CAS  Google Scholar 

  • Kim HT, Jung CM, Kim SH, Lee S-Y (2023) Review of plasma processing for polymers and bio-materials using a commercial frequency (50/60 Hz)-generated discharge. Polymers 15(13):2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LFR, Bilal M, Chandra R, Bharagava RN (2021) Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng 9(2). https://doi.org/10.1016/j.jece.2020.105012

  • Klose S, Manfred K, Norman H, Ritchie G, Van Helden J (2020) The spatial distribution of HO2 in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy. Plasma Sources Sci Technol 29(8):085011

    Article  CAS  Google Scholar 

  • Kumar D, Patel Z, Pandit P, Pandit R, Patel A, Joshi M, Joshi C (2021) Textile industry wastewaters from Jetpur, Gujarat, India, are dominated by Shewanellaceae, Bacteroidaceae, and Pseudomonadaceae harboring genes encoding catalytic enzymes for textile dye degradation. Front Environ Sci 9. https://doi.org/10.3389/fenvs.2021.720707

  • Kundu D, Banerjee D, Ghosh S, Das N, Thakur S, Das B, Chattopadhyay K (2019) Plasma enhanced chemical vapour deposited amorphous carbon coating for hydrophobicity enhancement in commercial cotton fabrics. Physica E 114:113594

    Article  Google Scholar 

  • Lamy B, Pomel C (2002) Influence of fiber defects on the stiffness properties of flax fibers-epoxy composite materials. J Mater Sci Lett 21(15):1211–1214

    Article  CAS  Google Scholar 

  • Laroque DA, Seó ST, Valencia GA, Laurindo JB, Carciofi BAM (2022) Cold plasma in food processing: design, mechanisms, and application. J Food Eng 312:110748

    Article  CAS  Google Scholar 

  • Laurano R, Boffito M, Torchio A, Cassino C, Chiono V, Ciardelli G (2019) Plasma treatment of polymer powder as an effective tool to functionalize polymers: case study application on an amphiphilic polyurethane. Polymers 11(12):2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Yang S, Choi D, Kim W, Kim J, Hong J (2019a) Chemically surface-engineered polydimethylsiloxane layer via plasma treatment for advancing textile-based triboelectric nanogenerators. Nano Energy 57:353–362

    Article  CAS  Google Scholar 

  • Lee E, VahidMohammadi A, Yoon YS, Beidaghi M, Kim D-J (2019b) Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sensors 4(6):1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Tran TN, Oh C-H (2023) Role of helium metastable state in the interaction between He atmospheric pressure plasma jet and ns pulsed laser. Spectrochimica Acta Part B: Atom Spectrosc 201. https://doi.org/10.1016/j.sab.2023.106628

  • Levchenko I, Xu S, Baranov O, Bazaka O, Ivanova EP, Bazaka K (2021) Plasma and polymers: recent progress and trends. Molecules 26(13):4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Liu W (2022) The formation of atmospheric pressure air low temperature plasma jet. Plasma Phys Rep 48(11):1180–1188

    Article  Google Scholar 

  • Li Y, Zhou Y, Gu Y, Chen B, Wang B, Yan J, Liu J, Chen F, Zhao D, Liu X (2022) Improving surface wettability and adhesion property of polytetrafluoroethylene by atmospheric-pressure ammonia water-mixed plasma treatment. Vacuum 196:110763

    Article  CAS  Google Scholar 

  • Liang Y-S, Xue C, Zhang Y-R, Wang Y-N (2021) Investigation of active species in low-pressure capacitively coupled N2/Ar plasmas. Phys Plasmas 28(1). https://doi.org/10.1063/5.0031120

  • Liston EM, Martinu L, Wertheimer MR (1993) Plasma surface modification of polymers for improved adhesion: a critical review. J Adhes Sci Technol 7(10):1091–1127. https://doi.org/10.1163/156856193x00600

    Article  CAS  Google Scholar 

  • Liu D, Zhang Y, Xu M, Chen H, Lu X, Ostrikov K (2020a) Cold atmospheric pressure plasmas in dermatology: sources, reactive agents, and therapeutic effects. Plasma Processes Polym 17(4):1900218

    Article  CAS  Google Scholar 

  • Liu R, Li J, Li M, Zhang Q, Shi G, Li Y, Hou C, Wang H (2020b) MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl Mater Interfaces 12(41):46446–46454

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhu Z, Xing P, Zheng H, Hu S (2020c) Plasma induced chemical vapor generation for atomic spectrometry: a review. Spectrochim Acta, Part B 167:105822

    Article  CAS  Google Scholar 

  • Maciel de Sousa E, Bruno de Vasconcelos Leitão A, Carvalho Serra PL, Borges JO, Vega ML, Moura JVB, Costa TH d. C, do Nascimento RM, Magalhães de Sousa RR, da Luz Lima C (2023) Surface modification of AISI 316 steel by α-MoO3 thin films grown using cathodic cage plasma deposition. Physica B: Condensed Matter 648. https://doi.org/10.1016/j.physb.2022.414410

  • Małajowicz J, Khachatryan K, Kozłowska M (2022) Properties of water activated with low-temperature plasma in the context of microbial activity. Beverages 8(4). https://doi.org/10.3390/beverages8040063

  • Mandolfino C (2019) Polypropylene surface modification by low pressure plasma to increase adhesive bonding: effect of process parameters. Surf Coat Technol 366:331–337

    Article  CAS  Google Scholar 

  • Mandolfino C, Cassettari L, Pizzorni M, Saccaro S, Lertora E (2021) A design-of-experiments approach to estimate the effect of plasma-treatment parameters on the mechanical resistance of adhesive-bonded joints. J Manuf Process 67:177–194. https://doi.org/10.1016/j.jmapro.2021.04.054

    Article  Google Scholar 

  • Manojkumar P, Pranav S, Lokeshkumar E, Shishir R, Nasiruddin U, Rameshbabu N (2023) Development of surface modified titanium alloy as a promising photocatalyst for textile waste water treatment. J Alloys Compd 952. https://doi.org/10.1016/j.jallcom.2023.169906

  • Massa DJ (2023) Polyester materials and properties. Polyester Films: Mater Process Appl 19–46

  • Melki S, Biguenet F, Dupuis D (2019) Hydrophobic properties of textile materials: robustness of hydrophobicity. The Journal of the Textile Institute 110(8):1221–1228

    Article  CAS  Google Scholar 

  • Mirzaei M, Furxhi I, Murphy F, Mullins M (2021) A supervised machine-learning prediction of textile’s antimicrobial capacity coated with nanomaterials. Coatings 11(12):1532

    Article  CAS  Google Scholar 

  • Mishra AK, Singh J, Mishra PP (2021) Microplastics in polar regions: an early warning to the world’s pristine ecosystem. Sci Total Environ 784:147149

    Article  CAS  PubMed  Google Scholar 

  • Moon DE, Webb MR (2020) Imaging studies of emission and laser scattering from a solution-cathode glow discharge. J Anal at Spectrom 35(9):1859–1867

    Article  CAS  Google Scholar 

  • Morshed MN, Behary N, Guan J, Nierstrasz VA (2021) Immobilizing redox enzyme on amino functional group-integrated tailor-made polyester textile: high loading, stability, and application in a bio-Fenton system. ACS Sustain Chem Eng 9(26):8879–8894

    Article  CAS  Google Scholar 

  • Motevalli M, Uhlemann J, Stranghöner N, Balzani D (2019) Geometrically nonlinear simulation of textile membrane structures based on orthotropic hyperelastic energy functions. Compos Struct 223:110908

    Article  Google Scholar 

  • Mouele ESM, Tijani JO, Badmus KO, Pereao O, Babajide O, Fatoba OO, Zhang C, Shao T, Sosnin E, Tarasenko V (2021) A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. J Environ Chem Eng 9(5):105758

    Article  CAS  Google Scholar 

  • Naebe M, Haque ANMA, Haji A (2022) Plasma-assisted antimicrobial finishing of textiles: a review. Engineering 12:145–163. https://doi.org/10.1016/j.eng.2021.01.011

    Article  Google Scholar 

  • Navascués P, Cotrino J, González-Elipe AR, Gómez-Ramírez A (2022) Plasma assisted CO2 dissociation in pure and gas mixture streams with a ferroelectric packed-bed reactor in ambient conditions. Chem Eng J 430:133066

    Article  Google Scholar 

  • Neifar M, Sghaier I, Guembri M, Chouchane H, Mosbah A, Ouzari HI, Jaouani A, Cherif A (2019) Recent advances in textile wastewater treatment using microbial consortia. J Text Eng Fash Technol 5(3). https://doi.org/10.15406/jteft.2019.05.00194

  • Nurazzi N, Harussani M, Aisyah H, Ilyas R, Norrrahim M, Khalina A, Abdullah N (2021) Treatments of natural fiber as reinforcement in polymer composites—a short review. Func Compos Struct 3(2):024002

    Article  CAS  Google Scholar 

  • Nyika J, Dinka M (2022) Sustainable management of textile solid waste materials: the progress and prospects. Mater Today: Proceedings 62:3320–3324. https://doi.org/10.1016/j.matpr.2022.04.241

    Article  Google Scholar 

  • Okuno T, Yasuda T, Yasuda H (1992) Effect of crystallinity of PET and nylon 66 fibers on plasma etching and dyeability characteristics. Text Res J 62(8):474–480

    Article  CAS  Google Scholar 

  • Omar B, El-Gammal M, Abou-Shanab R, Fotidis IA, Angelidaki I, Zhang Y (2019) Biogas upgrading and biochemical production from gas fermentation: Impact of microbial community and gas composition. Biores Technol 286:121413

    Article  CAS  Google Scholar 

  • Ota K, Kinjo R (2022) Zero-valent species of group 13–15 elements. Chem 8(2):340–350

    Article  CAS  Google Scholar 

  • Palaskar SS, Kale RD, Deshmukh RR (2020) Application of atmospheric pressure plasma for adhesion improvement in polyurethane coating on polypropylene fabrics. J Coat Technol Res 17:485–501

    Article  CAS  Google Scholar 

  • Paneru R, Ki SH, Lamichhane P, Nguyen LN, Adhikari BC, Jeong IJ, Mumtaz S, Choi J, Kwon JS, Choi EH (2020) Enhancement of antibacterial and wettability performances of polyvinyl alcohol/chitosan film using non-thermal atmospheric pressure plasma. Appl Surf Sci 532:147339

    Article  CAS  Google Scholar 

  • Peran J, Ercegović Ražić S (2020) Application of atmospheric pressure plasma technology for textile surface modification. Text Res J 90(9–10):1174–1197

    Article  CAS  Google Scholar 

  • Peter John E, Mishra U (2023) A sustainable three-layer circular economic model with controllable waste, emission, and wastewater from the textile and fashion industry. J Clean Prod 388. https://doi.org/10.1016/j.jclepro.2022.135642

  • Pillai RR, Thomas V (2023) Plasma surface engineering of natural and sustainable polymeric derivatives and their potential applications. Polymers (Basel) 15(2). https://doi.org/10.3390/polym15020400

  • Prada T, Harnchana V, Lakhonchai A, Chingsungnoen A, Poolcharuansin P, Chanlek N, Klamchuen A, Thongbai P, Amornkitbamrung V (2022) Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Res 15(1):272–279

    Article  CAS  Google Scholar 

  • Prado M, Marski SRDS, Pacheco LP, da Costa Barros AW, Gerardo CF, Prado MC, Marques FD, do Nascimento Lunz J, de Carvalho Silva GC, Archanjo BS (2022) Hexamethyldisiloxane coating by plasma to create a superhydrophobic surface for fabric masks. J Mater Res Technol 17:913-924

  • Primc G, Zaplotnik R, Vesel A, Mozetic M (2022) Mechanisms involved in the modification of textiles by non-equilibrium plasma treatment. Molecules 27(24). https://doi.org/10.3390/molecules27249064

  • Putra VGV, Mohamad JN (2023) Response surface methodology and artificial neural network modeling of work of adhesion on plasma-treated polyester–cotton-woven fabrics. J Adhes Sci Technol 37(6):976–996

    Article  CAS  Google Scholar 

  • Qi L, Wang B, Zhang W, Yu B, Zhou M, Hu Y, Xing W (2022) Durable flame retardant and dip-resistant coating of polyester fabrics by plasma surface treatment and UV-curing. Prog Org Coat 172:107066

    Article  CAS  Google Scholar 

  • Qi P, Chen F, Li Y, Li H, Gu X, Sun J, Zhang S (2023) A review of durable flame-retardant fabrics by finishing: fabrication strategies and challenges. Advanced Fiber Materials 5(3):731–763

    Article  CAS  Google Scholar 

  • Racka-Szmidt K, Stonio B, Żelazko J, Filipiak M, Sochacki M (2021) A review: inductively coupled plasma reactive ion etching of silicon carbide. Materials 15(1):123

    Article  PubMed  PubMed Central  Google Scholar 

  • Radetić M, Marković D (2022) A review on the role of plasma technology in the nano-finishing of textile materials with metal and metal oxide nanoparticles. Plasma Processes Polym 19(4):2100197

    Article  Google Scholar 

  • Rajeshkumar G (2022) Effect of sodium hydroxide treatment on dry sliding wear behavior of Phoenix sp. fiber reinforced polymer composites. J Indus Text 51(2_suppl), 2819S-2834S

  • Ribeiro AI, Senturk D, Silva KK, Modic M, Cvelbar U, Dinescu G, Mitu B, Nikiforov A, Leys C, Kuchakova I (2019) Antimicrobial efficacy of low concentration PVP-silver nanoparticles deposited on DBD plasma-treated polyamide 6, 6 fabric. Coatings 9(9):581

    Article  CAS  Google Scholar 

  • Röntgen WC (1896) On a new kind of rays. Science 3(59):227–231

    Article  PubMed  Google Scholar 

  • Rusu B-G (2022) Recent advances in atmospheric-pressure plasma technology. Appl Sci 12(21). https://doi.org/10.3390/app122110847

  • Ryu J, Wakida T, Takagishi T (1991) Effect of corona discharge on the surface of wool and its application to printing. Text Res J 61(10):595–601

    Article  CAS  Google Scholar 

  • Sadeghi-Kiakhani M, Safapour S, Sabzi F, Tehrani-Bagha AR (2020) Effect of ultra violet (UV) irradiation as an environmentally friendly pre-treatment on dyeing characteristic and colorimetric analysis of wool. Fibers Polym 21:179–187

    Article  CAS  Google Scholar 

  • Said MM, Rehan M, El-Sheikh SM, Zahran MK, Abdel-Aziz MS, Bechelany M, Barhoum A (2021) Multifunctional hydroxyapatite/silver nanoparticles/cotton gauze for antimicrobial and biomedical applications. Nanomaterials 11(2):429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Naz MY, Shoukat B, Shukrullah S, Hussain Z (2021) Functionality and applications of non-thermal plasma activated textiles: a review. Mater Today: Proceedings 47:S74–S82. https://doi.org/10.1016/j.matpr.2020.05.158

    Article  CAS  Google Scholar 

  • Samanta KK, Joshi AG, Jassal M, Agrawal AK (2021) Hydrophobic functionalization of cellulosic substrate by tetrafluoroethane dielectric barrier discharge plasma at atmospheric pressure. Carbohyd Polym 253:117272

    Article  CAS  Google Scholar 

  • Samanta KK, Basak S, Pandit P (2020) Plasma and other irradiation technologies application in textile. Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques 309–333

  • Sanavi Fard M, Ehsani A, Soleimani F (2023) Treatment of synthetic textile wastewater containing Acid Red 182 by electro-Peroxone process using RSM. J Environ Manage 344:118379. https://doi.org/10.1016/j.jenvman.2023.118379

    Article  CAS  PubMed  Google Scholar 

  • Sandanuwan T, Hendeniya N, Amarasinghe D, Attygalle D, Weragoda S (2021) The effect of atmospheric pressure plasma treatment on wetting and absorbance properties of cotton fabric. Mater Today: Proceedings 45:5065–5068

    CAS  Google Scholar 

  • Seok H-J, Park J-M, Jeong J, Lan S, Lee D-K, Kim H-K (2023) Plasma damage-free deposition of transparent Sn-doped In2O3 top cathode using isolated plasma soft deposition for perovskite solar cells. Nano Energy 111. https://doi.org/10.1016/j.nanoen.2023.108431

  • Sethi V, Verma C, Mukhopadhyay S, Gupta A, Gupta B (2023) Oxidative functionalization of polypropylene mesh surface by radio frequency plasma. Surf Interfaces 37. https://doi.org/10.1016/j.surfin.2023.102656

  • Shabanian S, Khatir B, Nisar A, Golovin K (2020) Rational design of perfluorocarbon-free oleophobic textiles. Nat Sustain 3(12):1059–1066

    Article  Google Scholar 

  • Sharma P, Ponte F, Lima MJ, Figueiredo NM, Ferreira J, Carvalho S (2023) Plasma etching of polycarbonate surfaces for improved adhesion of Cr coatings. Appl Surf Sci 637. https://doi.org/10.1016/j.apsusc.2023.157903

  • Sihelník S, Krumpolec R, Kelar Tučeková Z, Kelar J, Stupavská M, Černák M, Kováčik D (2023) Atmospheric-pressure air plasma sources for cleaning and activation of float soda-lime glass: effects and comparison. Surf Interfaces 40. https://doi.org/10.1016/j.surfin.2023.103080

  • Simoncicova J, Krystofova S, Medvecka V, Durisova K, Kalinakova B (2019) Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol 103(13):5117–5129. https://doi.org/10.1007/s00253-019-09877-x

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Vajpayee M, Ledwani L (2020) Eco-friendly surface modification and nanofinishing of textile polymers to enhance functionalisation. Nanotechnology for Energy and Environmental Engineering 529–559

  • Skaarhoj K (1998a) Plasmatreat GmbH: family business. https://www.plasmatreat.com/en/company/about-plasmatreat/family-business/#:~:text=Plasmatreat%20works%20exactly%20in%20the,on%20plasma%20systems%20and%20processes. Accessed 27 July 2023

  • Skaarhoj K (1998b) Plasmatreat GmbH: long-lasting dyes, functional surfaces, high process speeds: plasma in the textile industry. Accessed: 27 July 2023 from https://www.plasmatreat.com/en/industry-solutions/textiles/

  • Smith GE (1997) JJ Thomson and the electron: 1897–1899—an introduction. Chem Educ 2:1–42

    Article  Google Scholar 

  • Sohbatzadeh F, Shakerinasab E, Mirzanejhad S (2023) Surface modification of aramid yarn by atmospheric pressure plasma: reinforcement and floating properties. Polym Testing 117:107836

    Article  CAS  Google Scholar 

  • Song H, Peng Y, Liu S, Bai S, Hong X, Li J (2019) The roles of various plasma active species in toluene degradation by non-thermal plasma and plasma catalysis. Plasma Chem Plasma Process 39(6):1469–1482. https://doi.org/10.1007/s11090-019-10013-w

    Article  CAS  Google Scholar 

  • Sparavigna AC (2008) Plasma treatment advantages for textiles. https://doi.org/10.48550/arXiv.0801.3727

  • Subedi DP, Joshi UM, Wong CS (2017) Dielectric barrier discharge (DBD) plasmas and their applications. Plasma science and technology for emerging economies: an AAAPT experience 693–737

  • Subeshan B, Usta A, Asmatulu R (2020) Deicing and self-cleaning of plasma-treated superhydrophobic coatings on the surface of aluminum alloy sheets. Surf Interfaces 18:100429

    Article  CAS  Google Scholar 

  • Suits CG, Martin MJ (1974) Irving Langmuir (1881–1957): a biographical memoir. National Academy of Sciences Biographical Memoir 214.Washington, DC

  • Sundriyal P, Pandey M, Bhattacharya S (2020) Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding. Int J Adhes Adhes 101:102626

    Article  CAS  Google Scholar 

  • Tabares FL, Junkar I (2021) Cold plasma systems and their application in surface treatments for medicine. Molecules 26(7). https://doi.org/10.3390/molecules26071903

  • Takahashi K (2019) Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles. Rev Modern Plasma Phys 3(1):3

    Article  Google Scholar 

  • Tan Z, Yuan S, Hong M, Zhang L, Huang Q (2020) Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. J Hazard Mater 384:121370

    Article  CAS  PubMed  Google Scholar 

  • Tang AY, Kan CW (2020) Non-aqueous dyeing of cotton fibre with reactive dyes: a review. Color Technol 136(3):214–223

    Article  CAS  Google Scholar 

  • Tharchanaa S, Anupriyanka T, Shanmugavelayutham G (2022) Ecofriendly surface modification of cotton fabric to enhance the adhesion of CuO nanoparticles for antibacterial activity. Mater Technol 37(14):3222–3230

    Article  CAS  Google Scholar 

  • The Guardian (2023) Global fresh water demand will outstrip supply by 40% by 2030. The Guardian. https://www.theguardian.com/environment/2023/mar/17/global-fresh-water-demand-outstrip-supply-by-2030. Accessed 15 Jan 2024

  • Thompson R, Austin D, Wang C, Neville A, Lin L (2021) Low-frequency plasma activation of nylon 6. Appl Surf Sci 544:148929

    Article  CAS  Google Scholar 

  • Thomson JJ (1906) Carriers of negative electricity. Nobel Lect 11(1906):1901–1921

    Google Scholar 

  • Tiedemann D, Hofmann P, Emmerlich J, Chan Y-A, Ulrich S, Herdrich G, Müller M (2021) Cylindrical inertial electrostatic confinement plasma source for surface treatment. Vacuum 193:110502

    Article  CAS  Google Scholar 

  • Timoshina Y, Voznesensky E, Tskhay E, Sysoev V, Krasina I, Kulevtsov G (2019) Modification of surface of textile materials with silver nanoparticles in the radio-frequency induction plasma discharge of low pressure. J Phys Conf Ser 1328:012083.  https://doi.org/10.1088/1742-6596/1328/1/012083

  • Tiwari S, Caiola A, Bai X, Lalsare A, Hu J (2020) Microwave plasma-enhanced and microwave heated chemical reactions. Plasma Chem Plasma Process 40(1):1–23

    Article  CAS  Google Scholar 

  • Tseng C-Y, Cheng IC, Chen J-Z (2022) Low-pressure-plasma-processed NiFe-MOFs/nickel foam as an efficient electrocatalyst for oxygen evolution reaction. Int J Hydrogen Energy 47(85):35990–35998. https://doi.org/10.1016/j.ijhydene.2022.08.179

    Article  CAS  Google Scholar 

  • Tudoran C, Roşu MC, Coroş M (2020) A concise overview on plasma treatment for application on textile and leather materials. Plasma Process Polym 17(8). https://doi.org/10.1002/ppap.202000046

  • Turkoglu Sasmazel H, Alazzawi M, Kadim Abid Alsahib N (2021) Atmospheric pressure plasma surface treatment of polymers and influence on cell cultivation. Molecules 26(6). https://doi.org/10.3390/molecules26061665

  • Tyczkowski J, Balcerzak J, Sielski J, Krawczyk-Kłys I (2020) Effect of carbon black nanofiller on adhesion properties of SBS rubber surfaces treated by low-pressure plasma. Polymers 12(3):616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin MA, Begum MS, Ashraf M, Azad AK, Adhikary AC, Hossain MS (2023) Water and chemical consumption in the textile processing industry of Bangladesh. PLOS Sustain Trans 2(7):e0000072

    Article  Google Scholar 

  • Ullah MH, Akther H, Rahman MM, Foisal A, Hasan MM, Amir-Al Zumahi S, Amri A (2021) Surface modification and improvements of wicking properties and dyeability of grey jute-cotton blended fabrics using low-pressure glow discharge air plasma. Heliyon 7(8)

  • UNESCO (2023) Imminent risk of a global water crisis, warns the UN World Water Development Report 2023. unesco. https://www.unesco.org/en/articles/imminent-risk-global-water-crisis-warns-un-world-water-development-report-2023.  Accessed15 June 2024

  • Vera RE, Suarez A, Zambrano F, Marquez R, Bedard J, Vivas KA, Pifano A, Farrell M, Ankeny M, Jameel H, Gonzalez R (2023) Upcycling cotton textile waste into bio-based building blocks through an environmentally friendly and high-yield conversion process. Resour Conserv Recycl 189. https://doi.org/10.1016/j.resconrec.2022.106715

  • Vesel A, Primc G (2020) Investigation of surface modification of polystyrene by a direct and remote atmospheric-pressure plasma jet treatment. Materials 13(11):2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesel A, Zaplotnik R, Primc G, Mozetič M (2020) Evolution of the surface wettability of PET polymer upon treatment with an atmospheric-pressure plasma jet. Polymers 12(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidya T, Prakash C, Rajwin TJ, Babu VR, Shah BA, Reetuparna R (2022) Effect of plasma treatment on polyester knitted fabrics: part I—thermal comfort. Indian J Fibre Text Res (IJFTR) 47(4):437–442

    CAS  Google Scholar 

  • Vohrer U, Müller M, Oehr C (1998) Glow-discharge treatment for the modification of textiles. Surf Coat Technol 98(1–3):1128–1131

    Article  CAS  Google Scholar 

  • Vuckovac M, Latikka M, Liu K, Huhtamäki T, Ras RH (2019) Uncertainties in contact angle goniometry. Soft Matter 15(35):7089–7096

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Jiang J, Gao W (2022) Reviewing textile wastewater produced by industries: characteristics, environmental impacts, and treatment strategies. Water Sci Technol 85(7):2076–2096. https://doi.org/10.2166/wst.2022.088

    Article  CAS  Google Scholar 

  • Wang J, Zhang K, Meynen V, Bogaerts A (2023a) Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap: effects of metal rings on the discharge behavior and performance. Chem Eng J 465:142953

    Article  CAS  Google Scholar 

  • Wang Z, Hu W, Wang W, Xiao Y, Chen Y, Wang X (2023b) Antibacterial electrospun nanofibrous materials for wound healing. Adv Fiber Mater 5(1):107–129

    Article  CAS  Google Scholar 

  • Wang H, Xie X, Lin G, Wang Y, Tong W, Zhu H (2020) Helium ion penetration in sputtering cathode materials: a crucial process for the helium treatment of oxide thin films. Thin Solid Films 713. https://doi.org/10.1016/j.tsf.2020.138339

  • Wei H, Xia J, Zhou W, Zhou L, Hussain G, Li Q, Ostrikov KK (2020) Adhesion and cohesion of epoxy-based industrial composite coatings. Compos B Eng 193:108035

    Article  CAS  Google Scholar 

  • Weigel C, Phi HB, Denissel FA, Hoffmann M, Sinzinger S, Strehle S (2021) Highly anisotropic fluorine-based plasma etching of ultralow expansion glass. Adv Eng Mater 23(6):2001336

    Article  CAS  Google Scholar 

  • Weltmann KD, Kolb JF, Holub M, Uhrlandt D, Šimek M, Ostrikov K, Hamaguchi S, Cvelbar U, Černák M, Locke B (2019) The future for plasma science and technology. Plasma Processes Polym 16(1):1800118

    Article  Google Scholar 

  • Wojewodka MM, White C, Kontis K (2020) Effect of permittivity and frequency on induced velocity in ac-DBD surface and channel plasma actuators. Sens Actuators, A 303:111831

    Article  CAS  Google Scholar 

  • Xiong C, Wang Y, Lin L, Gao M, Huang Y, Chu PK (2023) Deposition of nanocomposites coating on polyimide films by atmospheric pressure plasma for enhanced thermal conductivity. Surf Interfaces 37. https://doi.org/10.1016/j.surfin.2023.102758

  • Xu L, Deng J, Guo Y, Wang W, Zhang R, Yu J (2019) Fabrication of super-hydrophobic cotton fabric by low-pressure plasma-enhanced chemical vapor deposition. Text Res J 89(10):1853–1862

    Article  CAS  Google Scholar 

  • Xu Q-N, Wang H-L, Liang J-P, Zhang Y, Yang D-Z (2023) Atmospheric air and liquid-film DBD plasma using sine AC excitations for purpose of improving the hydrophilicity of PTFE. Vacuum 207. https://doi.org/10.1016/j.vacuum.2022.111688

  • Yan J, Du H, Zhu G, Cui Y, Yu X, Cheng D, Lu Y, Li H (2021a) Application of atmospheric pressure low temperature plasma in cotton fabric desizing. J Phys Conf Ser 1790:012060. https://doi.org/10.1088/1742-6596/1790/1/012060

  • Yan X, Cao W, Li H (2021b) Biomedical alloys and physical surface modifications: a mini-review. Materials 15(1):66. https://doi.org/10.3390/ma15010066

  • Yang T-H, Lin Z-Z, Tsai S-C, Dai J-Z, Chen S-M, Lin M-W, Chen S-Y (2023) Deposition of GeSn film on Si substrate by plasma-enhanced chemical vapor deposition using GeCl4 and SnCl4 in H2 for developing short-wave infrared Si photonics. Mater Sci Semicond Process 162. https://doi.org/10.1016/j.mssp.2023.107515

  • Yaseen DA, Scholz M (2018) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16(2):1193–1226. https://doi.org/10.1007/s13762-018-2130-z

    Article  CAS  Google Scholar 

  • Yazicioğlu Ö, YaşarKatircioğlu T (2017) Applications of plasma technology in energy sector. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi 3(1):18–44

    Google Scholar 

  • Yi K, Liu D, Chen X, Yang J, Wei D, Liu Y, Wei D (2021) Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Acc Chem Res 54(4):1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Qiu P, Qian Y, Kong Z, Zheng X, Tang Z, Guo H (2019) Textile wastewater treatment for water reuse: a case study. Processes 7(1). https://doi.org/10.3390/pr7010034

  • Yu M, Lyu W, Liao Y, Zhu M (2023) Snakeskin-inspired hierarchical winkled surface for ultradurable superamphiphobic fabrics via short-fluorinated polymer reactive infusion. Adv Fiber Mater 5(2):543–553

    Article  CAS  Google Scholar 

  • Yunusov R, Garipov M (2020) Features of Glow Discharge burning between a hollow cathode and a mesh anode. J Phys: Conf Ser

  • Zaplotnik R, Vesel A (2020) Effect of VUV radiation on surface modification of polystyrene exposed to atmospheric pressure plasma jet. Polymers 12(5):1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Liu W, Liu P, Tian J, Xu M, Sun S, Wang Y (2020) Study on atmospheric air glow discharge plasma generation and surface modification of carbon fiber fabric. Plasma Processes Polym 17(4):1900148

    Article  CAS  Google Scholar 

  • Zhou F, Shan J, Cui L, Qi Y, Hu J, Zhang Y, Liu Z (2022) Direct plasma-enhanced-chemical-vapor-deposition syntheses of vertically oriented graphene films on functional insulating substrates for wide-range applications. Adv Func Mater 32(42):2202026

    Article  CAS  Google Scholar 

  • Zhou H, Li Q, Zhang Z, Wang X, Niu H (2023) Recent advances in superhydrophobic and antibacterial cellulose-based fibers and fabrics: bio-inspiration, strategies, and applications. Adv Fiber Mater 5(5):1555–1591

    Article  CAS  Google Scholar 

  • Zhu Y, Li C, Cui H, Lin L (2020) Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci Technol 99:142–151

    Article  CAS  Google Scholar 

  • Zou R-S, Li S, Zhang L-L, Zhang C, Han Y-J, Gao G, Sun X, Gong X (2019) Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10. J Biosci Bioeng 127(6):698–702

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the College of Science, Donghua University.

Author information

Authors and Affiliations

Authors

Contributions

H. S. conceptualized, collect data, and wrote the first draft.

M. T. reviewed and edited the manuscript.

C. H. collect the data.

S. S. collect the data.

A. B. provided the technical suggestions.

Q. G. provided the technical suggestions.

T. X. provided the technical suggestions and supervision.

Corresponding author

Correspondence to Tang Xiaoliang.

Ethics declarations

Ethical Approval and Consent to Participate

We are writing to express our interest in submitting a review article to Journal of Materials Circular Economy and assure you that the disclosed information is correct. We understand the importance of transparency and integrity in scholarly publications and maintaining highest ethical standards is of utmost importance to us, and we are committed to upholding these principles throughout the submission and review process.

Consent for Publication

We hereby give permission to Journal of Materials Circular Economy to publish this article if accepted or passes the Journal’s review process.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3041 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ssekasamba, H., Tebyetekerwa, M., Haodong, C. et al. Review of Plasma Surface Engineering Technology Toward Sustainable Textile Materials. Mater Circ Econ 6, 27 (2024). https://doi.org/10.1007/s42824-024-00114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42824-024-00114-z

Keywords

Navigation