Skip to main content
Log in

ZIF67-derived ultrafine Co9S8 nanoparticles embedded in nitrogen-doped hollow carbon nanocages for enhanced performances of trifunctional ORR/OER/HER and overall water splitting

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstracts

Electrochemical oxidation and reduction reactions are fundamental in various conversion and energy storage devices. Functional materials derived from MOFs have been considered promising as electrical catalysts for ORR, HER, and OER, which can be used in Zinc-air batteries and water electrolysis. Herein, we designed a novel approach to fabricating the ultrafine Co9S8 embedded nitrogen-doped hollow carbon nanocages (Co9S8@N-HC). The method involved a process of sulfidation of cobalt-based metal–organic frameworks (ZIF67) and then coating them with polypyrrole (PPy). PPy has notable properties such as high electrical conductivity and abundant nitrogen content, rendering it highly promising for catalytic applications. The Co9S8@N-HC catalyst was successfully synthesized via the carbonization of CoSx@PPy. Remarkably, the Co9S8@N-HC catalyst demonstrated exceptional electrocatalytic activity, requiring only low overpotentials of 285 mV and 201 mV at 10 mA cm‒2 for OER and HER, respectively, and exhibited high activity for ORR, with an onset potential (Eonset) of 0.923 V and half-wave potential (E1/2) of 0.879 V in alkaline media. The electrocatalytic efficiency displayed by Co9S8@N-HC opens a new line of research on the synergistic effect of MOF-PPy materials on energy storage and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Li Y, Chen J, Cai P, Wen Z (2018) An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J Mater Chem A 6(12):4948–4954. https://doi.org/10.1039/c7ta10374c

    Article  CAS  Google Scholar 

  2. Koo Y, Oh S, Im K, Kim J (2023) Ultrasonic spray pyrolysis synthesis of nano-cluster ruthenium on molybdenum dioxide for hydrogen evolution reaction. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.155774

    Article  Google Scholar 

  3. Tiwari JN, Umer M, Bhaskaran G, Umer S, Lee G, Kim MG, Lee HK, Kumar K, Vilian ATE, Huh YS, Han YK (2023) Atomic layers of ruthenium oxide coupled with Mo2TiC2Tx MXene for exceptionally high catalytic activity toward water oxidation. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2023.123139

    Article  Google Scholar 

  4. Woo SH, Kim S, Woo S, Park S-H, Kang YS, Jung N, Yim SD (2023) Investigating the effect of solvent composition on ink structure and crack formation in polymer electrolyte membrane fuel cell catalyst layers. Korean J Chem Eng. https://doi.org/10.1007/s11814-023-1474-3

    Article  Google Scholar 

  5. Nguyen QH, Im K, Kim J (2022) Synthesis of hollow Fe Co, and N-doped carbon catalysts from conducting polymer-metal-organic-frameworks core-shell particles for their application in an oxygen reduction reaction. Int J Hydrog Energy 47(57):24169–24178. https://doi.org/10.1016/j.ijhydene.2022.04.075

    Article  CAS  Google Scholar 

  6. Guo M, Wang L, Zhan J, Jiao X, Chen D, Wang T (2020) A novel design of an electrolyser using a trifunctional (HER/OER/ORR) electrocatalyst for decoupled H2/O2 generation and solar to hydrogen conversion. J Mater Chem A 8(32):16609–16615. https://doi.org/10.1039/d0ta05102k

    Article  CAS  Google Scholar 

  7. Zhou G, Liu G, Liu X, Yu Q, Mao H, Xiao Z, Wang L (2021) 1D/3D Heterogeneous Assembling Body as Trifunctional Electrocatalysts Enabling Zinc-Air Battery and Self-Powered Overall Water Splitting. Adv Funct Mater. https://doi.org/10.1002/adfm.202107608

    Article  PubMed  Google Scholar 

  8. Cai J, Liu H, Luo Y, Xiong Y, Zhang L, Wang S, Xiao K, Liu ZQ (2022) Single-phase bimetal sulfide or metal sulfide heterojunction: Which one is better for reversible oxygen electrocatalyst? J Energy Chem 74:420–428. https://doi.org/10.1016/j.jechem.2022.07.023

    Article  CAS  Google Scholar 

  9. Im K, Jang JH, Heo J, Kim D, Lee KS, Lim HK, Kim J, Yoo SJ (2022) Design of Co-NC as efficient electrocatalyst: the unique structure and active site for remarkable durability of proton exchange membrane fuel cells. Appl Catal B 308:121220–121220. https://doi.org/10.1016/j.apcatb.2022.121220

    Article  CAS  Google Scholar 

  10. Zhao D, Zhuang Z, Cao X, Zhang C, Peng Q, Chen C, Li Y (2020) Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem Soc Rev 49(7):2215–2264. https://doi.org/10.1039/c9cs00869a

    Article  CAS  PubMed  Google Scholar 

  11. Lv X, Wei W, Wang H, Huang B, Dai Y (2019) Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: a computational study. Appl Catal B 255:117743. https://doi.org/10.1016/j.apcatb.2019.05.045

    Article  CAS  Google Scholar 

  12. Wang H, Zhu QL, Zou R, Xu Q (2017) Metal-Organic frameworks for energy applications. Chem 2(1):52–80. https://doi.org/10.1016/j.chempr.2016.12.002

    Article  CAS  Google Scholar 

  13. Pirouzfar V, Roustaie N, Su C-H (2023) Gas transport characteristics of mixed matrix membrane containing MIL-100 (Fe) metal-organic frameworks and PEBAX precursors. Korean J Chem Eng. https://doi.org/10.1007/s11814-023-1501-4

    Article  Google Scholar 

  14. Amidi M, Salehi E (2023) ZIF-8 derived porous carbon/ZnO as an effective nanocomposite adsorbent for removal of acetic acid. Korean J Chem Eng. https://doi.org/10.1007/s11814-023-1492-1

    Article  Google Scholar 

  15. Li W-H, Deng W-H, Wang G-E, Xu G (2020) Conductive MOFs. Energy Chem 2(2):100029. https://doi.org/10.1016/j.enchem.2020.100029

    Article  Google Scholar 

  16. Li Z, Gao R, Feng M, Deng YP, Xiao D, Zeng Y, Zhao Z, Luo D, Liu Y, Zhang Z, Wang D, Li Q, Li H, Wang X, Chen Z (2021) Modulating metal-organic frameworks as advanced oxygen electrocatalysts. Adv Energy Mater 11(16):2003291. https://doi.org/10.1002/aenm.202003291

    Article  CAS  Google Scholar 

  17. Tu TN, Pham TM, Nguyen QH, Tran NT, Le VN, Ngo LH, Chang K, Kim J (2024) Metal–organic frameworks for aromatic-based VOC capture. Sep Purif Tech. https://doi.org/10.1016/j.seppur.2023.125883

    Article  Google Scholar 

  18. Lou J, Fu Q, Yu L, Yuan H, Zhao J, Wei X, Wang T, Mo C (2023) In-situ growth of ZIF-8/CP with ultra-high adsorption capacity for removing Malachite green from water. Carbon Lett. https://doi.org/10.1007/s42823-023-00583-3

    Article  Google Scholar 

  19. Baumann AE, Burns DA, Liu B, Thoi VS (2019) Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem 2(1):1–14. https://doi.org/10.1038/s42004-019-0184-6

    Article  Google Scholar 

  20. Nguyen QH, Im K, Kim J (2023) Synthesis of hollow leaf-shaped iron-doped nickel-cobalt layered double hydroxides using two-dimensional (2D) zeolitic imidazolate framework catalyzing oxygen evolution reaction. Catalysts 13(2):403. https://doi.org/10.3390/catal13020403

    Article  CAS  Google Scholar 

  21. Wang T, Yang C, Liu Y, Yang M, Li X, He Y, Li H, Chen H, Lin Z (2020) Dual-shelled multidoped hollow carbon nanocages with hierarchical porosity for high-performance oxygen reduction reaction in both alkaline and acidic media. Nano Lett 20(8):5639–5645. https://doi.org/10.1021/acs.nanolett.0c00081

    Article  CAS  PubMed  Google Scholar 

  22. Xiong J, Cao Z, Wang H, Ban D, Zhou Z, Li Y, Chen S (2022) CoS2/MoS2 hollow heterostructure as high-efficiency bifunctional electrocatalyst for overall water splitting. Chem Select 7(47):e202202700. https://doi.org/10.1002/slct.202202700

    Article  CAS  Google Scholar 

  23. Kim M, Seok H, Selvam NCS, Cho J, Choi GH, Nam MG, Kang S, Kim T, Yoo PJ (2021) Kirkendall effect induced bifunctional hybrid electrocatalyst (Co9S8@MoS2/N-doped hollow carbon) for high performance overall water splitting. J Power Sour. https://doi.org/10.1016/j.jpowsour.2021.229688

    Article  Google Scholar 

  24. Khan J, Liu H, Xiao J, Zhu Y, Hayat A, Ullah H, Ahmed G, Zhang H, Sun Y, Han L (2023) Synthesis of heteroatom incorporated porous carbon encapsulated Fe-doped Co9S8 as an efficient bifunctional electrocatalyst for overall water splitting. J Phys Chem Solids 175:111220. https://doi.org/10.1016/j.jpcs.2023.111220

    Article  CAS  Google Scholar 

  25. Wu Z, Wang J, Song M, Zhao G, Zhu Y, Fu G, Liu X (2018) Boosting oxygen reduction catalysis with N-doped carbon coated Co9S8 microtubes. ACS Appl Mater Interfaces 10(30):25415–25421. https://doi.org/10.1021/acsami.8b07207

    Article  CAS  PubMed  Google Scholar 

  26. Chakrabartty S, Karmakar S, Raj CR (2020) An electrocatalytically active nanoflake-like Co9S8-CoSe2 heterostructure for overall water splitting. ACS Appl Nano Mater 3(11):11326–11334. https://doi.org/10.1021/acsanm.0c02431

    Article  CAS  Google Scholar 

  27. Pang C, Ma X, Wu Y, Li S, Xu Z, Wang M, Zhu X (2022) Microflower-like Co9S8@MoS2 heterostructure as an efficient bifunctional catalyst for overall water splitting. RSC Adv 12(35):22931–22938. https://doi.org/10.1039/d2ra04086g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo X, Zhou Q, Du S, Li J, Zhong J, Deng X, Liu Y (2018) Porous Co9S8/nitrogen, sulfur-doped carbon@Mo2C dual catalyst for efficient water splitting. ACS Appl Mater Interfaces 10(26):22291–22302. https://doi.org/10.1021/acsami.8b06166

    Article  CAS  PubMed  Google Scholar 

  29. Hou Y, Qiu M, Nam G, Kim MG, Zhang T, Liu K, Zhuang X, Cho J, Yuan C, Feng X (2017) Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett 17(7):4202–4209. https://doi.org/10.1021/acs.nanolett.7b01030

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Qian X, Xu C, Huang S, Zhu C, Jiang X, Shao L, Hou L (2017) Hierarchical porous Co9S8/nitrogen-doped carbon@MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 9(34):28394–28405. https://doi.org/10.1021/acsami.7b06384

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Xu CY, Du Y, Ma FX, Li Y, Zhen L (2019) Ultrathin Co9S8 nanosheets vertically aligned on N, S/rGO for low voltage electrolytic water in alkaline media. Sci Rep 9(1):1951. https://doi.org/10.1038/s41598-018-35831-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G (2017) Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 139(40):14143–14149. https://doi.org/10.1021/jacs.7b06514

    Article  CAS  PubMed  Google Scholar 

  33. Qu X, Han Y, Chen Y, Lin J, Li G, Yang J, Jiang Y, Sun S (2021) Stepwise pyrolysis treatment as an efficient strategy to enhance the stability performance of Fe-NX/C electrocatalyst towards oxygen reduction reaction and proton exchange membrane fuel cell. Appl Catal B 295:120311. https://doi.org/10.1016/j.apcatb.2021.120311

    Article  CAS  Google Scholar 

  34. Wang Y, Du Z, Xu J, Meng Z, Zhang C, Cui Y, Li Y, Jiang C, Zeng Y, Yu S, Tian H (2022) Improved catalytic activity and stability of Co9S8 by Se incorporation for efficient oxygen evolution reaction. Inorg Chem 61(51):21139–21147. https://doi.org/10.1021/acs.inorgchem.2c03805

    Article  CAS  PubMed  Google Scholar 

  35. Zhu X, Wu Q, Dai J, Zhao D, Yang C, Li L, Li N, Chen S (2021) Co9S8 nanoparticles embedded in nitrogen, sulfur codoped porous carbon nanosheets for efficient oxygen/hydrogen electrocatalysis. Electrochimica Acta. https://doi.org/10.1016/j.electacta.2021.138299

    Article  Google Scholar 

  36. Wang H, Xu J, Zhang Q, Hu S, Zhou W, Liu H, Wang X (2022) Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv Func Mater 32(17):2112362. https://doi.org/10.1002/adfm.202112362

    Article  CAS  Google Scholar 

  37. Oluigbo CJ, Ullah N, Xie M, Okoye CC, Yusuf BA, Yaseen W, Alagarasan JK, Rajalakshmi K, Xu Y, Xie J (2020) Incorporation of pyridinic and graphitic N to Ni@CNTs: as a competent electrocatalyst for hydrogen evolution reaction. Int J Energy Res 44(11):9157–9165. https://doi.org/10.1002/er.5536

    Article  CAS  Google Scholar 

  38. Zhang F, Zhang D, Liu W, Li X, Chen Q (2022) Fluorine enhanced pyridinic-N configuration as an ultra-active site for oxygen reduction reaction in both alkaline and acidic electrolytes. Carbon 187:67–77. https://doi.org/10.1016/j.carbon.2021.10.073

    Article  CAS  Google Scholar 

  39. Feng LL, Li GD, Liu Y, Wu Y, Chen H, Wang Y, Zou YC, Wang D, Zou X (2015) Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl Mater Interfaces 7(1):980–988. https://doi.org/10.1021/am507811a

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen QH, Tinh VDC, Oh S, Pham TM, Tu TN, Kim D, Han J, Im K, Kim J (2024) Metal-organic framework-polymer complex-derived single-atomic oxygen reduction catalyst for anion exchange membrane fuel cells. Chem Eng J 481:148508. https://doi.org/10.1016/j.cej.2023.148508

    Article  CAS  Google Scholar 

  41. Peng Y, Zhang F, Zhang Y, Luo X, Chen L, Shi Y (2022) N, S-doped hollow carbon nanosheet-encapsulated Co9S8 nanoparticles as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Dalton Trans 51(33):12630–12640. https://doi.org/10.1039/d2dt01650h

    Article  CAS  PubMed  Google Scholar 

  42. Han J, Bao H, Wang JQ, Zheng L, Sun S, Wang ZL, Sun C (2021) 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl Catal B 280:119411. https://doi.org/10.1016/j.apcatb.2020.119411

    Article  CAS  Google Scholar 

  43. He R, Lu T, Xu N, Liu G, Zhang Y, Qiao J (2023) Ultra-thin hierarchical porous carbon coated metal phosphide self-assembled efficient tri-functional electrodes for overall water splitting and rechargeable zinc-air batteries. Chem Eng J 461:141843. https://doi.org/10.1016/j.cej.2023.141843

    Article  CAS  Google Scholar 

  44. Liu H, Guan J, Yang S, Yu Y, Shao R, Zhang Z, Dou M, Wang F, Xu Q (2020) Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv Mater 32(36):e2003649. https://doi.org/10.1002/adma.202003649

    Article  CAS  PubMed  Google Scholar 

  45. Bai Y, Wang Y, Qiao Z, Yang Y, Deng L, Li C, Chen X, Wang S, Huang Y, Zhang X, Cao D (2022) Facile synthesis of Fe2P/Co embedded trifunctional electrocatalyst for high-performance anion exchange membrane fuel cells, rechargeable Zn–air batteries, and overall water splitting. J Mater Chem A 10(30):16037–16045. https://doi.org/10.1039/d2ta03099c

    Article  CAS  Google Scholar 

  46. Tang K, Chen L, Xiong Y, Zhang L, Wu M (2023) Carbon-encapsulated cobalt phosphide nanowires as trifunctional catalysts for water splitting devices. ACS Appl Nano Mater 6(13):11553–11560. https://doi.org/10.1021/acsanm.3c01566

    Article  CAS  Google Scholar 

  47. Kumar M, Nagaiah TC (2023) A NiCu–MoS2 electrocatalyst for pH-universal hydrogen evolution reaction and Zn–air batteries driven self-power water splitting. J Mater Chem A 11(34):18336–18348. https://doi.org/10.1039/d3ta02668j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Programs (2019R1A2C1090693, 2020R1A6A1A03048004) and the Brain Pool Program (2022H1D3A2A02079453) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT, Republic of Korea.

Funding

This work was funded by Ministry of Science and ICT,South Korea (Grand numbers NRF-2019R1A2C1090693, NRF-2020R1A6A1A03048004, NRF-2022H1D3A2A02079453).

Author information

Authors and Affiliations

Authors

Contributions

Quoc Hao Nguyen: Conceptualization, Investigation, Writing-original draft. Kyungmin Im: Writing-Review & Editing, Supervision. Thach N Tu: Investigation, Writing-Review & Editing. Jongwook Park: Writing-Review & Editing, Funding acquisition. Jinsoo Kim: Writing-Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Jinsoo Kim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Q.H., Im, K., Tu, T.N. et al. ZIF67-derived ultrafine Co9S8 nanoparticles embedded in nitrogen-doped hollow carbon nanocages for enhanced performances of trifunctional ORR/OER/HER and overall water splitting. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00733-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00733-1

Keywords

Navigation