Skip to main content
Log in

Facile green synthesis of heteroatoms doped Aegle marmelos-derived carbon quantum dots and its tuneable fluorescence characteristics influenced by solvent polarity

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The detailed understanding of fluorescence emission processes is still unclear. This study demonstrates Aegle marmelos derived luminescent heteroatoms (N, Ca, K) doped carbon quantum dots (CQDs) using an economically and ecologically sustainable synthesis process without the necessity for any doping precursors due to its phytochemical, vitamin and mineral content. Carboxyl functionalization was done by adding lemon juice to the fruit extract. The morphological, physiochemical, compositional, crystallinity, and surface functional groups having heteroatom doped CQDs were analysed by HRTEM, EDX, XPS, XRD, FTIR etc. Besides, CQDs exhibited pH and solvent-dependent tuneable fluorescence characteristics. In fact, beyond pH 7.77, a protonation-deprotonation-driven red-shift was observed together with a decrease in the contribution of prominent peaks. Meanwhile, the features of solvatochromic fluorescence were examined in a range of aprotic and protic solvents with low and high polarity. Based on the studied Kamlet–Taft parameters and the obtained spectroscopic characterizations, a suitable fluorescence emission mechanism is provided. The observed solvatochromic fluorescence is thought to be caused by a combination of dipole moment polarisation, intramolecular charge transfer processes with or without H-bond stabilisation via the interaction of heteroatoms doped CQDs with solvent mediated by electron donation and acceptance from various surface functional groups such as hydroxyl, carboxyl with solvent molecules. Hence, this study is believed to promote the development of eco-tuneable fluorescent heteroatom doped CQDs and provide further insights into the fundamental fluorescence mechanisms, which include the relationship between morphology, surface properties and plausible quantum effects between CQDs and solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available on reasonable request from corresponding author.

References

  1. Hu X, Li Y, Xu Y, Gan Z, Zou X, Shi J et al (2021) Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem 339:127775. https://doi.org/10.1016/j.foodchem.2020.127775

    Article  CAS  PubMed  Google Scholar 

  2. Saboorizadeh B, Zare-Dorabei R, Shahbazi N (2021) Green synthesis of carbon quantum dots and their application as a fluorometric sensor for highly selective determination of 6-mercaptopurine in biological samples. J Taiwan Inst Chem Eng 129:389–395. https://doi.org/10.1016/j.jtice.2021.09.015

    Article  CAS  Google Scholar 

  3. Safardoust-Hojaghan H, Salavati-Niasari M, Amiri O, Rashki S, Ashrafi M (2021) Green synthesis, characterization and antimicrobial activity of carbon quantum dots-decorated ZnO nanoparticles. Ceram Int 47:5187–5197. https://doi.org/10.1016/j.ceramint.2020.10.097

    Article  CAS  Google Scholar 

  4. Yadav PK, Upadhyay RK, Kumar D, Bano D, Chandra S, Jit S et al (2021) Synthesis of green fluorescent carbon quantum dots from the latex of Ficus benghalensis for the detection of tyrosine and fabrication of Schottky barrier diode. New J Chem 45:12549–12556. https://doi.org/10.1039/D1NJ01655E

    Article  CAS  Google Scholar 

  5. Li Z, Wang Q, Zhou Z, Zhao S, Zhong S, Xu L et al (2021) Green synthesis of carbon quantum dots from corn stalk shell by hydrothermal approach in near-critical water and applications in detecting and bioimaging. Microchem J 166:106250. https://doi.org/10.1016/j.microc.2021.106250

    Article  CAS  Google Scholar 

  6. Amer WA, Rehab AF, Abdelghafar ME, Torad NL, Atlam AS, Ayad MM (2021) Green synthesis of carbon quantum dots from purslane leaves for the detection of formaldehyde using quartz crystal microbalance. Carbon N Y 179:159–171. https://doi.org/10.1016/j.carbon.2021.03.047

    Article  CAS  Google Scholar 

  7. Malavika JP, Shobana C, Ragupathi M, Kumar P, Lee YS, Govarthanan M et al (2021) A sustainable green synthesis of functionalized biocompatible carbon quantum dots from Aloe barbadensis Miller and its multifunctional applications. Environ Res 200:111414. https://doi.org/10.1016/j.envres.2021.111414

    Article  CAS  PubMed  Google Scholar 

  8. Zhu L, Shen D, Wang Q, Luo KH (2021) Green synthesis of tunable fluorescent carbon quantum dots from lignin and their application in anti-counterfeit printing. ACS Appl Mater Interfaces 13:56465–56475. https://doi.org/10.1021/acsami.1c16679

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Liu Q, Leng J, Liu H, Zhang Y, Wang C et al (2021) The green synthesis of carbon quantum dots and applications for sulcotrione detection and anti-pathogen activities. J Saudi Chem Soc 25:101373. https://doi.org/10.1016/j.jscs.2021.101373

    Article  CAS  Google Scholar 

  10. Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N (2011) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 47:932–934. https://doi.org/10.1039/C0CC03552A

    Article  Google Scholar 

  11. Cao L, Anilkumar P, Wang X, Liu J-H, Sahu S, Meziani MJ et al (2011) Reverse Stern–Volmer behavior for luminescence quenching in carbon nanoparticles. Can J Chem 89:104–109. https://doi.org/10.1139/V10-096

    Article  CAS  Google Scholar 

  12. Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G et al (2009) Photoinduced electron transfers with carbon dots. Chem Commun. https://doi.org/10.1039/b906252a

    Article  Google Scholar 

  13. Kong W, Wu H, Ye Z, Li R, Xu T, Zhang B (2014) Optical properties of pH-sensitive carbon-dots with different modifications. J Lumin 148:238–242. https://doi.org/10.1016/j.jlumin.2013.12.007

    Article  CAS  Google Scholar 

  14. Sciortino A, Marino E, van Dam B, Schall P, Cannas M, Messina F (2016) Solvatochromism unravels the emission mechanism of carbon nanodots. J Phys Chem Lett 7:3419–3423. https://doi.org/10.1021/acs.jpclett.6b01590

    Article  CAS  PubMed  Google Scholar 

  15. Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M (2010) Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun 46:3681. https://doi.org/10.1039/c000114g

    Article  CAS  Google Scholar 

  16. Kumar P, Bohidar HB (2013) Observation of fluorescence from non-functionalized carbon nanoparticles and its solvent dependent spectroscopy. J Lumin 141:155–161. https://doi.org/10.1016/j.jlumin.2013.02.043

    Article  CAS  Google Scholar 

  17. Kozák O, Datta KKR, Greplová M, Ranc V, Kašlík J, Zbořil R (2013) Surfactant-derived amphiphilic carbon dots with tunable photoluminescence. J Phys Chem C 117:24991–24996. https://doi.org/10.1021/jp4040166

    Article  CAS  Google Scholar 

  18. Wang H, Sun C, Chen X, Zhang Y, Colvin VL, Rice Q et al (2017) Excitation wavelength independent visible color emission of carbon dots. Nanoscale 9:1909–1915. https://doi.org/10.1039/C6NR09200D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Monika S, Thirumal M, Kumar P (2023) Phytochemical and biological review of Aegle marmelos Linn. Futur Sci OA. https://doi.org/10.2144/fsoa-2022-0068

    Article  Google Scholar 

  20. Sharma N, Radha, Kumar M, Zhang B, Kumari N, Singh D et al (2022) Aegle marmelos (L.) Correa: an underutilized fruit with high nutraceutical values—a review. Int J Mol Sci 23:10889. https://doi.org/10.3390/ijms231810889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Venthodika A, Chhikara N, Mann S, Garg MK, Sofi SA, Panghal A (2021) Bioactive compounds of Aegle marmelos L., medicinal values and its food applications: a critical review. Phyther Res 35:1887–1907. https://doi.org/10.1002/ptr.6934

    Article  CAS  Google Scholar 

  22. Sharma CK, Sharma M, Sharma V (2016) Therapeutic potential of the medicinal plant Aegle Marmelos (Linn.) Correa: insight. J Environ Pathol Toxicol Oncol 35:1–10. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2015014485

    Article  PubMed  Google Scholar 

  23. Manandhar B, Paudel KR, Sharma B, Karki R (2018) Phytochemical profile and pharmacological activity of Aegle marmelos Linn. J Integr Med 16:153–163. https://doi.org/10.1016/j.joim.2018.04.007

    Article  PubMed  Google Scholar 

  24. Wei Y, Chen L, Zhao S, Liu X, Yang Y, Du J et al (2021) Green-emissive carbon quantum dots with high fluorescence quantum yield: preparation and cell imaging. Front Mater Sci 15:253–265. https://doi.org/10.1007/s11706-021-0544-x

    Article  Google Scholar 

  25. Latief U, Ul Islam S, Khan ZMSH, Khan MS (2021) A facile green synthesis of functionalized carbon quantum dots as fluorescent probes for a highly selective and sensitive detection of Fe3+ ions. Spectrochim Acta Part A Mol Biomol Spectrosc 262:120132. https://doi.org/10.1016/j.saa.2021.120132

    Article  CAS  Google Scholar 

  26. Magdy G, Abdel Hakiem AF, Belal F, Abdel-Megied AM (2021) Green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots as new fluorescent nanosensors for determination of salinomycin and maduramicin in food samples. Food Chem 343:128539. https://doi.org/10.1016/j.foodchem.2020.128539

    Article  CAS  PubMed  Google Scholar 

  27. Preethi M, Viswanathan C, Ponpandian N (2021) A green path to extract carbon quantum dots by coconut water: another fluorescent probe towards Fe3+ ions. Particuology 58:251–258. https://doi.org/10.1016/j.partic.2021.03.019

    Article  Google Scholar 

  28. Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887. https://doi.org/10.1021/jo00165a018

    Article  CAS  Google Scholar 

  29. Lu J, Brown JS, Liotta CL, Eckert CA (2001) Polarity and hydrogen-bonding of ambient to near-critical water: Kamlet–Taft solvent parameters. Chem Commun. https://doi.org/10.1039/b100425p

    Article  Google Scholar 

  30. Black JJ, Dolan A, Harper JB, Aldous L (2018) Kamlet–Taft solvent parameters, NMR spectroscopic analysis and thermoelectrochemistry of lithium–glyme solvate ionic liquids and their dilute solutions. Phys Chem Chem Phys 20:16558–16567. https://doi.org/10.1039/C8CP02527D

    Article  CAS  PubMed  Google Scholar 

  31. Jessop PG, Jessop DA, Fu D, Phan L (2012) Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 14:1245. https://doi.org/10.1039/c2gc16670d

    Article  CAS  Google Scholar 

  32. Liu H, Yang J, Li Z, Xiao L, Aryee AA, Sun Y et al (2019) Hydrogen-bond-induced emission of carbon dots for wash-free nucleus imaging. Anal Chem 91:9259–9265. https://doi.org/10.1021/acs.analchem.9b02147

    Article  CAS  PubMed  Google Scholar 

  33. Hu Y, Neumann C, Scholtz L, Turchanin A, Resch-Genger U, Eigler S (2022) Polarity, intramolecular charge transfer, and hydrogen bond co-mediated solvent effects on the optical properties of graphene quantum dots. Nano Res. https://doi.org/10.1007/s12274-022-4752-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors declare no acknowledgement.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VK: conceptualization, methodology, investigation, formal analysis, and writing- original draft preparation. VDS: methodology, investigation, and formal analysis. GC: Investigation and Formal analysis. SC: methodology and supervision. MKB: conceptualization, methodology, resources, writing- reviewing and editing, and overall supervision.

Corresponding author

Correspondence to M. K. Bera.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2403 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansay, V., Sharma, V.D., Chandan, G. et al. Facile green synthesis of heteroatoms doped Aegle marmelos-derived carbon quantum dots and its tuneable fluorescence characteristics influenced by solvent polarity. Carbon Lett. 34, 1045–1054 (2024). https://doi.org/10.1007/s42823-023-00659-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00659-0

Keywords

Navigation