Skip to main content
Log in

Synergistic effect of novel ionic liquid/graphene complex on the flame retardancy of epoxy nanocomposites

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Epoxy resin (EP) is a thermosetting resin with excellent properties, but its application is limited due to its high brittleness and poor flame retardancy. Therefore, to solve this problem, a dispersion system of imidazole-containing ionic liquid ([Dmim]Es) and graphene in epoxy resin is designed based on the π–π stacking effect between imidazole and graphite layers. The study on the thermal and flame-retardant properties of the composites show that the modified [Dmim]Es–graphene nanosheets improved the flame retardancy, smoke suppression and thermal stability of epoxy resin. With the addition of 5wt% [Dmim]Es and 1% Gra, the exothermic rate (HRR) and total exothermic (THR) of the composites decrease by 35% and 30.2% compared with the untreated epoxy cross-linking, respectively. The limiting oxygen index reaches 33.4%, the UL-94 test rating reaches V-0. The characterization of mechanical properties shows that the tensile properties and impact properties increased by 13% and 30%, respectively. Through SEM observation, the addition of [Dmim]Es improves the dispersion of graphene in the EP collective and changes the mechanical fracture behavior. The results show that ionic liquid [Dmim]Es-modified graphene nanosheets are well dispersed in the matrix, which not only improves the mechanical properties of epoxy resin (EP), but also has a synergistic effect on flame retardancy. This work provides novel flame-retardant and graphene dispersion methods that broaden the range of applications of epoxy resins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Vidil T, Tournilhac F, Musso S, Robisson A, Leibler L (2016) Control of reactions and network structures of epoxy thermosets. Prog Polym Sci 62:126–179. https://doi.org/10.1016/j.progpolymsci.2016.06.003

    Article  CAS  Google Scholar 

  2. Zhang D, Jia D, Huang X (2007) Bisphenol-A epoxy resin reinforced and toughened by hyperbranched epoxy resin. Front Chem Eng China 1(4):349–354. https://doi.org/10.1007/s11705-007-0063-z

    Article  CAS  Google Scholar 

  3. Capricho JC, Fox B, Hameed N (2019) Multifunctionality in epoxy resins. Polym Rev 60(1):1–41. https://doi.org/10.1080/15583724.2019.1650063

    Article  CAS  Google Scholar 

  4. Yao Z, Qian L, Qiu Y, Chen Y, Xu B, Li J (2019) Flame retardant and toughening behaviors of bio-based DOPO-containing curing agent in epoxy thermoset. Polym Adv Technol 31(3):461–471. https://doi.org/10.1002/pat.4782

    Article  CAS  Google Scholar 

  5. Zhang M, Ding X, Zhan Y, Wang Y, Wang X (2020) Improving the flame retardancy of poly(lactic acid) using an efficient ternary hybrid flame retardant by dual modification of graphene oxide with phenylphosphinic acid and nano MOFs. J Hazard Mater 384:121260. https://doi.org/10.1016/j.jhazmat.2019.121260

    Article  CAS  Google Scholar 

  6. Chen Y, Xu L, Wu X, Xu B (2019) The influence of nano ZnO coated by phosphazene/triazine bi-group molecular on the flame retardant property and mechanical property of intumescent flame retardant poly (lactic acid) composites. Thermochim Acta 679:178336. https://doi.org/10.1016/j.tca.2019.178336

    Article  CAS  Google Scholar 

  7. Zhang Y-C, Xu G-L, Liang Y, Yang J, Hu J (2016) Preparation of flame retarded epoxy resins containing DOPO group. Thermochim Acta 643:33–40. https://doi.org/10.1016/j.tca.2016.09.015

    Article  CAS  Google Scholar 

  8. Long L, Yin J, He W, Xiang Y, Qin S, Yu J (2019) Synergistic effect of different nanoparticles on flame retardant poly(lactic acid) with bridged DOPO derivative. Polym Compos 40(3):1043–1052. https://doi.org/10.1002/pc.24791

    Article  CAS  Google Scholar 

  9. Xie M, Zhang S, Ding Y, Wang F, Liu P, Tang H, Wang Y, Yang M (2017) Synthesis of a heat-resistant DOPO derivative and its application as flame-retardant in engineering plastics. J Appl Polym Sci 134(22). https://doi.org/10.1002/app.44892

  10. Liu S, Fang Z, Yan H, Chevali VS, Wang H (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A Appl Sci Manuf 89:26–32. https://doi.org/10.1016/j.compositesa.2016.03.012

    Article  CAS  Google Scholar 

  11. Zhu M, Liu L, Wang Z (2020) Iron-phosphorus-nitrogen functionalized reduced graphene oxide for epoxy resin with reduced fire hazards and improved impact toughness. Compos B Eng 199:108283. https://doi.org/10.1016/j.compositesb.2020.108283

    Article  CAS  Google Scholar 

  12. Liu J, Yuen RKK, Hong N, Hu Y (2018) The influence of mesoporous SiO2-graphene hybrid improved the flame retardancy of epoxy resins. Polym Adv Technol 29(5):1478–1486. https://doi.org/10.1002/pat.4259

    Article  CAS  Google Scholar 

  13. Xu W, Wang X, Wu X, Li W, Cheng C (2019) Organic-inorganic dual modified graphene: improving the dispersibility of graphene in epoxy resin and the fire safety of epoxy resin. Polym Degrad Stab 165:80–91. https://doi.org/10.1016/j.polymdegradstab.2019.04.023

    Article  CAS  Google Scholar 

  14. Chi Z, Guo Z, Xu Z, Zhang M, Li M, Shang L, Ao Y (2020) A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism. Polym Degrad Stab 176:109151. https://doi.org/10.1016/j.polymdegradstab.2020.109151

    Article  CAS  Google Scholar 

  15. Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42(13):5963–5977. https://doi.org/10.1039/c3cs60071h

    Article  CAS  Google Scholar 

  16. Jiang Z, Wang Q, Liu L, Zhang Y, Du F, Pang A (2020) Dual-functionalized imidazolium ionic liquids as curing agents for epoxy resins. Ind Eng Chem Res 59(7):3024–3034. https://doi.org/10.1021/acs.iecr.9b06574

    Article  CAS  Google Scholar 

  17. Wang B, Qin L, Mu T, Xue Z, Gao G (2017) Are ionic liquids chemically stable? Chem Rev 117(10):7113–7131. https://doi.org/10.1021/acs.chemrev.6b00594

    Article  CAS  Google Scholar 

  18. Amarasekara AS (2016) Acidic ionic liquids. Chem Rev 116(10):6133–6183. https://doi.org/10.1021/acs.chemrev.5b00763

    Article  CAS  Google Scholar 

  19. Nordness O, Brennecke JF (2020) Ion dissociation in ionic liquids and ionic liquid solutions. Chem Rev 120(23):12873–12902. https://doi.org/10.1021/acs.chemrev.0c00373

    Article  CAS  Google Scholar 

  20. Sonnier R, Dumazert L, Livi S, Nguyen TKL, Duchet-Rumeau J, Vahabi H, Laheurte P (2016) Flame retardancy of phosphorus-containing ionic liquid based epoxy networks. Polym Degrad Stab 134:186–193. https://doi.org/10.1016/j.polymdegradstab.2016.10.009

    Article  CAS  Google Scholar 

  21. Li C, Ma C, Li J (2020) Highly efficient flame retardant poly(lactic acid) using imidazole phosphate poly(ionic liquid). Polym Adv Technol 31(8):1765–1775. https://doi.org/10.1002/pat.4903

    Article  CAS  Google Scholar 

  22. Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chemistry 13(18):5048–5058. https://doi.org/10.1002/chem.200700554

    Article  CAS  Google Scholar 

  23. Yang Y-K, He C-E, Peng R-G, Baji A, Du X-S, Huang Y-L, Xie X-L, Mai Y-W (2012) Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J Mater Chem 22(12):5666. https://doi.org/10.1039/c2jm16006d

    Article  CAS  Google Scholar 

  24. Ma JC, Dougherty DA (1997) The cation–π interaction. Chem Rev 97(5):1303–1324. https://doi.org/10.1021/cr9603744

    Article  CAS  Google Scholar 

  25. Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321(5895):1468–1472. https://doi.org/10.1126/science.1160309

    Article  CAS  Google Scholar 

  26. Saurín N, Sanes J, Bermúdez MD (2014) Effect of graphene and ionic liquid additives on the tribological performance of epoxy resin. Tribol Lett 56(1):133–142. https://doi.org/10.1007/s11249-014-0392-2

    Article  CAS  Google Scholar 

  27. Peng R, Wang Y, Tang W, Yang Y, Xie X (2013) Progress in imidazolium ionic liquids assisted fabrication of carbon nanotube and graphene polymer composites. Polymers 5(2):847–872. https://doi.org/10.3390/polym5020847

    Article  CAS  Google Scholar 

  28. Khalili Dermani A, Kowsari E, Ramezanzadeh B, Amini R (2019) Utilizing imidazole based ionic liquid as an environmentally friendly process for enhancement of the epoxy coating/graphene oxide composite corrosion resistance. J Ind Eng Chem 79:353–363. https://doi.org/10.1016/j.jiec.2019.07.010

    Article  CAS  Google Scholar 

  29. Duan W, Chen Y, Ma J, Wang W, Cheng J, Zhang J (2020) High-performance graphene reinforced epoxy nanocomposites using benzyl glycidyl ether as a dispersant and surface modifier. Compos B Eng 189:107878. https://doi.org/10.1016/j.compositesb.2020.107878

    Article  CAS  Google Scholar 

  30. Wang Z, Li F, Xia J, Xia L, Zhang F, Bi S, Shi G, Xia Y, Liu J, Li Y, Xia L (2014) An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin. Biosens Bioelectron 61:391–396. https://doi.org/10.1016/j.bios.2014.05.043

    Article  CAS  Google Scholar 

  31. Zhang X, Yan X, Guo J, Liu Z, Jiang D, He Q, Wei H, Gu H, Colorado HA, Zhang X, Wei S, Guo Z (2015) Polypyrrole doped epoxy resin nanocomposites with enhanced mechanical properties and reduced flammability. J Mater Chem C 3(1):162–176. https://doi.org/10.1039/c4tc01978d

    Article  CAS  Google Scholar 

  32. He Q-X, Tang L, Fu T, Shi Y-Q, Wang X-L, Wang Y-Z (2016) Novel phosphorus-containing halogen-free ionic liquids: effect of sulfonate anion size on physical properties, biocompatibility, and flame retardancy. RSC Adv 6(57):52485–52494. https://doi.org/10.1039/c6ra09515a

    Article  CAS  Google Scholar 

  33. Shieh J-Y, Wang C-S (2001) Synthesis of novel flame retardant epoxy hardeners and properties of cured products. Polymer 42(18):7617–7625. https://doi.org/10.1016/S0032-3861(01)00257-9

    Article  CAS  Google Scholar 

  34. Qu LJ, Sui YL, Zhang CL, Li PH, Dai XY, Xu BS (2020) Compatible cyclophosphazene-functionalized graphene hybrids to improve flame retardancy for epoxy nanocomposites. Reactive Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2020.104697

    Article  Google Scholar 

  35. Xue G, Zhang B, Sun M, Zhang X, Li J, Wang L, Song C (2019) Morphology, thermal and mechanical properties of epoxy adhesives containing well-dispersed graphene oxide. Int J Adhes Adhes 88:11–18. https://doi.org/10.1016/j.ijadhadh.2018.10.011

    Article  CAS  Google Scholar 

  36. Wan YJ, Yu SH, Yang WH, Zhu PL, Sun R, Wong CP, Liao WH (2016) Tuneable cellular-structured 3D graphene aerogel and its effect on electromagnetic interference shielding performance and mechanical properties of epoxy composites. RSC Adv 6(61):56589–56598. https://doi.org/10.1039/C6RA09459G

    Article  CAS  Google Scholar 

  37. Shang L, Zhang X, Zhang M, Jin L, Liu L, Xiao L, Li M, Ao Y (2017) A highly active bio-based epoxy resin with multi-functional group: synthesis, characterization, curing and properties. J Mater Sci 53(7):5402–5417. https://doi.org/10.1007/s10853-017-1797-8

    Article  CAS  Google Scholar 

  38. Kulkarni HB, Tambe P, Joshi GM (2017) Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review. Compos Interfaces 25(5–7):381–414. https://doi.org/10.1080/09276440.2017.1361711

    Article  CAS  Google Scholar 

  39. Wang J, Ma C, Wang P, Qiu S, Cai W, Hu Y (2018) Ultra-low phosphorus loading to achieve the superior flame retardancy of epoxy resin. Polym Degrad Stab 149:119–128. https://doi.org/10.1016/j.polymdegradstab.2018.01.024

    Article  CAS  Google Scholar 

  40. Fu X-L, Wang X, Xing W, Zhang P, Song L, Hu Y (2018) Two-dimensional cardanol-derived zirconium phosphate hybrid as flame retardant and smoke suppressant for epoxy resin. Polym Degrad Stab 151:172–180. https://doi.org/10.1016/j.polymdegradstab.2018.03.006

    Article  CAS  Google Scholar 

  41. Qiu Y, Qian L, Feng H, Jin S, Hao J (2018) Toughening effect and flame-retardant behaviors of phosphaphenanthrene/phenylsiloxane bigroup macromolecules in epoxy thermoset. Macromolecules 51(23):9992–10002. https://doi.org/10.1021/acs.macromol.8b02090

    Article  CAS  Google Scholar 

  42. Qian X, Song L, Bihe Y, Yu B, Shi Y, Hu Y, Yuen RKK (2014) Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater Chem Phys 143(3):1243–1252. https://doi.org/10.1016/j.matchemphys.2013.11.029

    Article  CAS  Google Scholar 

  43. Qian L, Ye L, Qiu Y, Qu S (2011) Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer 52(24):5486–5493. https://doi.org/10.1016/j.polymer.2011.09.053

    Article  CAS  Google Scholar 

  44. Shi Y-Q, Fu T, Xu Y-J, Li D-F, Wang X-L, Wang Y-Z (2018) Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem Eng J 354:208–219. https://doi.org/10.1016/j.cej.2018.08.023

    Article  CAS  Google Scholar 

  45. Liu B-W, Zhao H-B, Tan Y, Chen L, Wang Y-Z (2015) Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: from thermal crosslinking to flame retardance. Polym Degrad Stab 122:66–76. https://doi.org/10.1016/j.polymdegradstab.2015.10.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Youth Growth Science and technology plan project of Science and Technology Department of Jilin Province (20210508051RQ) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

CZ: conceptualization, methodology, writing—original draft. ZX: validation, investigation. WS: visualization, investigation. JZ: data curation, project administration. LS: resources, writing—review and editing. LW: writing—review and editing. YA: funding acquisition, supervision, writing—review and editing.

Corresponding authors

Correspondence to Lu Wang or Lei Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xu, Z., Sui, W. et al. Synergistic effect of novel ionic liquid/graphene complex on the flame retardancy of epoxy nanocomposites. Carbon Lett. 33, 501–516 (2023). https://doi.org/10.1007/s42823-022-00440-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00440-9

Keywords

Navigation