Skip to main content

Advertisement

Log in

Preparation and electrochemical performance of porous carbon derived from polypyrrole

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Supercross-linked polymers are widely used as carbon precursor materials due to their abundant carbon sources and low cost. In this paper, a supercross-linked polymer was prepared by the solvothermal method. The supercross-linked polymer as a precursor and the PPyC-800-A was synthesized by activating this with KOH. The microstructure, structure, and electrochemical performances of porous carbon PPyC-800-A were studied at different of temperature and carbon alkali ratio. According to the results, the porous carbon PPyC-800-1:2 is mainly composed of a stack of spherical particles with a high surface area of 1427.03 m2 g−1, an average pore diameter of 2.32 nm, and a high specific capacitance of 217.7 F g−1 at a current density of 1.0 A g−1 in a 6 M KOH electrolyte. It’s retention rate is 97.58% after 5000 constant current charges and discharges. With a specific capacitance decay rate of 21.91 percent, an energy density of 11.96 Wh kg−1, and a power density of 500.0 W kg−1, the current density rises from 1.0 A g−1 to 10.0 A g−1, exhibiting remarkable electrochemical properties, cycling stability, and energy production performance This study contributes experimental ideas to the field of supercross-linked polymer-derived carbon materials and energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–21317

    Article  CAS  Google Scholar 

  2. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  CAS  Google Scholar 

  3. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Article  CAS  Google Scholar 

  4. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850

    Article  CAS  Google Scholar 

  5. Stein A, Wang Z, Fierke MA (2009) Functionalization of Porous carbon materials with designed pore architecture. Adv Mater 21(3):265–293

    Article  CAS  Google Scholar 

  6. Lee JM, Briggs ME, Hasell T, Cooper AI (2016) Hyperporous carbons from hypercrosslinked polymers. Adv Mater 28(44):9804–9810

    Article  CAS  Google Scholar 

  7. Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44(8):2410–2414

    Article  CAS  Google Scholar 

  8. Kalaji M, Murphy PJ, Williams GO (1999) The study of conducting polymers for use as redox supercapacitors. Synth Met 102(1–3):1360–1361

    Article  CAS  Google Scholar 

  9. Gupta V, Miura N (2006) High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater Lett 60(12):1466–1469

    Article  CAS  Google Scholar 

  10. Chen Y, Zhang X, Lu JJ, Xu H (2019) Electrodeposition of PPy/HNO3 film and its capacitive behaviour. IOP Confer Ser Mater Sci Eng 484(1):012045

    CAS  Google Scholar 

  11. Cho G, Fung BM, Glatzhofer DT, Lee JS, Shul YG (2001) Preparation and characterization of polypyrrole-coated nanosized novel ceramics. Langmuir 17:456–461

    Article  CAS  Google Scholar 

  12. Ekramul Mahmud HNM, Kassim A, Zainal Z, Yunus WMM (2006) Fourier transform infrared study of polypyrrole-poly(vinyl alcohol) conducting polymer composite films: evidence of film formation and characterization. J Appl Polym Sci 100(5):4107–4113

    Article  Google Scholar 

  13. Padmapriya S, Harinipriya S (2019) Inorganic mineral doped polypyrrole for hydrogen storage in alkaline medium. Int J Hydrog Energy 45:401

    Article  Google Scholar 

  14. Wang P, Zheng Y, Li B (2013) Preparation and electrochemical properties of polypyrrole/graphite oxide composites with various feed ratios of pyrrole to graphite oxide. Synth Met 166:33–39

    Article  CAS  Google Scholar 

  15. Chuan LY, Thomas CC (2003) Synthesis and characterization of gold/polypyrrole core-shell nanocomposites and elemental gold nanoparticles based on the gold-containing nanocomplexes prepared by electrochemical methods in aqueous solutions. J Phys Chem B 107:12383–12386

    Article  Google Scholar 

  16. Cvetko BF, Brungs MP, Burford RP, Skyllas-Kazacos M (1988) Structure strength and electrical performance of conducting polypyrroles. J Mater Sci 23(6):2102–2106

    Article  CAS  Google Scholar 

  17. Wu LL, Wang PT, Chen XG, Zhang JQ, Luo HM (2022) Study of the preparation and electrochemical performance of porous carbon derived from hypercrosslinked polymers. Carbon Lett 32(3):849–862

    Article  Google Scholar 

  18. Liu A, Li C, Bai H, Shi G (2015) Electrochemical deposition of polypyrrole/sulfonated graphene composite films. J Phys Chem C 114:22783–22789

    Article  Google Scholar 

  19. Landois P, Pinault M, Huard M, Reita V, Rouzière S, Launois P, Mayne-L’Hermite M, Bendiab N (2014) Structure in nascent carbon nanotubes revealed by spatially resolved Raman spectroscopy. Thin Solid Films 568:102–110

    Article  CAS  Google Scholar 

  20. Obraztsov AN, Tyurnina AV, Obraztsova EA, Zolotukhin AA, Liu B, Chin KC, Wee ATS (2008) Raman scattering characterization of CVD graphite films. Carbon 46:963–968

    Article  CAS  Google Scholar 

  21. Chung DDL (2002) Review Graphite. J Mater Sci 37:1475–1489

    Article  CAS  Google Scholar 

  22. Yang HB, Miao J, Hung SF (2016) Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv 2(4):e1501122–e1501122

    Article  Google Scholar 

  23. Yang Y, Lin Z, Gao S, Su J, Lun ZY, Xia G, Chen J, Zhang R, Chen Q (2017) Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catalysis, Acscatal 7(469):6b02573

    Google Scholar 

  24. Szczęśniak B, Osuchowski Ł, Choma J, Jaroniec M (2017) Highly porous carbons obtained by activation of polypyrrole/reduced graphene oxide as effective adsorbents for CO2 H2 and C6H6. J Porous Mater 25(2):621–627

    Article  Google Scholar 

  25. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154

    Article  CAS  Google Scholar 

  26. Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132–4140

    Article  CAS  Google Scholar 

  27. Zelenka T (2016) Adsorption and desorption of nitrogen at 77 K on micro- and meso- porous materials: study of transport kinetics. Microporous Mesoporous Mater 227:202–209

    Article  CAS  Google Scholar 

  28. Mezzi A, Kaciulis S (2010) Surface investigation of carbon films: from diamond to graphite. Surf Interface Anal 42:1082–1084

    Article  CAS  Google Scholar 

  29. Wang Y, Dong L, Lai G, Wei M, Jiang X, Bai L (2019) Nitrogen-doped hierarchically porous carbons derived from polybenzoxazine for enhanced supercapacitor performance. Nanomaterials 9:131

    Article  Google Scholar 

  30. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos A 41(10):1345–1367

    Article  Google Scholar 

  31. Gong Y, Li D, Fu Q, Zhang Y, Pan C (2020) Nitrogen self-doped porous carbon for high-performance supercapacitors. ACS Appl Energy Mater 3:1585–1592

    Article  CAS  Google Scholar 

  32. Li S, Yu C, Yang J (2017) Ultrathin nitrogen-enriched hybrid carbon nanosheets for supercapacitors with ultrahigh rate performance and high energy density. ChemElectroChem 4:369–375

    Article  CAS  Google Scholar 

  33. Fan X, Yu C, Yang J (2015) A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv Energy Mater 5:1401761

    Article  Google Scholar 

  34. Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194

    Article  CAS  Google Scholar 

  35. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280

    Article  CAS  Google Scholar 

  36. Ma F, Ma D, Wu G, Geng W, Shao J, Song S, Wan J, Jieshan QIU (2016) Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chem Commun (Camb) 52(40):6673–6676

    Article  CAS  Google Scholar 

  37. Wang L, Mu G, Tian C, Li S, Wei Z, Tan T, Fu H (2012) In Situ intercalating expandable graphite for mesoporous carbon/graphite nanosheet composites as high-performance supercapacitor electrodes. Chemsuschem 5(12):2442–2450

    Article  CAS  Google Scholar 

  38. Cheng Y, Huang L, Xiao X, Yao B, Zhou J (2015) Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15:66–74

    Article  CAS  Google Scholar 

  39. Wang S, Pei B, Zhao X, Dryfe RAW (2013) Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2(4):530–536

    Article  CAS  Google Scholar 

  40. Kang YJ, Chung H, Han C-H, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. J Nanotechnol 23(28):065401

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the fund of National Nature Science Foundation of China (Nos. 21667017 and 52162031) and Lanzhou Talents Innovation and entrepreneurship Project (2021-RC-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heming Luo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 972 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Chen, X., Ding, C. et al. Preparation and electrochemical performance of porous carbon derived from polypyrrole. Carbon Lett. 33, 443–454 (2023). https://doi.org/10.1007/s42823-022-00434-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00434-7

Keywords

Navigation