Skip to main content

Advertisement

Log in

Study of the preparation and electrochemical performance of porous carbon derived from hypercrosslinked polymers

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Hypercrosslinked polymers HCPs have been widely used as precursors to prepare porous carbon materials because of their highly ordered porous structure and large specific surface area. In this paper, we used a solvothermal method to prepare a hypercrosslinked polymer, and the HCPC-700-A was prepared using an activation method with the hypercrosslinked polymer as the precursor. The effects of different carbon–alkali ratios on the microstructure, composition and electrochemical properties of porous carbon HCP were studied. The results show that the surface of porous carbon HCPC-700-A presents a relatively regular geometric shape, and a large number of pore structures are mainly micro- and mesopores. The specific surface area is 2074.53 m2 g−1, and the average pore size is between 1.29 and 1.93 nm. Porous carbon HCPC-700-1:2 has excellent electrochemical performance in 1 M H2SO4, and the specific capacitance is up to 464.4 F g1 at a current density of 1 A g−1. The specific capacitance decay rate is 29.72% when the current density is increased from 1 A g−1 to 8 A g−1. After 5000 cycles, the capacitance retention rate is 91.16% at a current density of 2 A g−1, showing excellent electrochemical performance, good cycle stability and perfect energy storage performance. This research provides new experimental ideas for HCPs in the electrochemical energy storage field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhai Y, Dou Y, Zhao D, Fulvio PF, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850

    Article  CAS  Google Scholar 

  2. Potphode DD, Mishra SP, Sivaraman P, Patri M (2017) Asymmetric supercapacitor devices based on dendritic conducting polymer and activated carbon. Electrochim Acta 230:29–38

    Article  CAS  Google Scholar 

  3. Miao L, Duan H, Zhu D, Lv Y, Liu M (2021) Boron “gluing” nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for durable supercapacitive activity. J Mater Chem A 9:2714–2724

    Article  CAS  Google Scholar 

  4. Stupp SI, Palmer LC (2013) Supramolecular chemistry and self-assembly in organic materials design. Chem Mater 26(1):507–518

    Article  Google Scholar 

  5. Jin Y, Yu C, Denman RJ, Zhang W (2013) Recent advances in dynamic covalent chemistry. Chem Soc Rev 42(16):6634–6654

    Article  CAS  Google Scholar 

  6. Feng X, Liang Y, Zhi L, Thomas A, Wu D, Lieberwirth I, Kolb U, Mullen K (2009) Synthesis of microporous carbon nanofibers and nanotubes from conjugated polymer network and evaluation in electrochemical capacitor. Adv Funct Mater 19(13):2125–2129

    Article  CAS  Google Scholar 

  7. Wei JS, Ding H, Wang YG, Xiong HM (2015) Hierarchical porous carbon materials with high capacitance derived from schiff-base networks. ACS Appl Mater Interfaces 7(10):5811–5819

    Article  CAS  Google Scholar 

  8. Huang YB, Pachfule P, Sun JK, Qiang X (2016) From covalent-organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach. J Mater Chem 4(11):4273–4279

    Article  CAS  Google Scholar 

  9. Chong Z, Rui K, Xue W, Xu Y, Jiang JX (2017) Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon 114:608–618

    Article  Google Scholar 

  10. Chaiyasat P, Chaiyasat A, Boontung W, Promdsorn S, Thipsit S (2011) Preparation and characterization of poly(divinylbenzene) microcapsules containing octadecane. Mater Sci Appl 2(8):1007–1013

    CAS  Google Scholar 

  11. Shen HY, Yong Z, Wen XE, Zhuang YM (2007) Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal Bioanal Chem 387:2227–2237

    Article  CAS  Google Scholar 

  12. Zhang Y, Wei S, Zhang W (2009) Titania nanocrystals and adsorptive nanoporous polymer composites: an enrichment and degradation system. Chemsuschem 2(9):867–872

    Article  CAS  Google Scholar 

  13. Gan Y, Chen G, Sang Y, Zhou F, Man R, Huang J (2019) Oxygen-rich hyper-cross-linked polymers with hierarchical porosity for aniline adsorption. Chem Eng J 368:29–36

    Article  CAS  Google Scholar 

  14. Wang Y, Gan Y, Huang J (2020) Hyper-cross-linked phenolic hydroxyl polymers with hierarchical porosity and their efficient adsorption performance. Ind Eng Chem Res 59(24):11275–11283

    Article  CAS  Google Scholar 

  15. Norisuye T, Morinaga T, Tran-Cong-Miyata Q (2005) Comparison of the gelation dynamics for polystyrenes prepared by conventional and living radical polymerizations: a time-resolved dynamic light scattering study. Polymer 46(6):1982–1994

    Article  CAS  Google Scholar 

  16. Li Y, Fan Y, Ma JJR (2002) The thermal properties of porous polydivinylbenzene beads. React Funct Polym 50(1):57–65

    Article  CAS  Google Scholar 

  17. Kanamori K, Nakanishi K, Hanada T (2006) Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv Mater 18(18):2407–2411

    Article  CAS  Google Scholar 

  18. Xia S, Daems N, Geboes B, Kurttepeli M, Bals S, Breugelmans T, Hubin A, Vankelecom IFJ, Pescarmona PP (2015) N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2. Appl Catal B 176–177:212–224

    Google Scholar 

  19. Pi YT, Xing XY, Lu LM, He ZB, Ren TZ (2016) Hierarchical porous activated carbon in OER with high efficiency. RSC Adv 6(104):102422–102427

    Article  CAS  Google Scholar 

  20. Su F, Poh CK, Chen JS, Xu G, Dan W, Qin L, Lin J, Xiong WL (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4(3):717–724

    Article  CAS  Google Scholar 

  21. Dutta S, Bhaumik A, Wu Kevin CW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7(11):3574–3592

    Article  CAS  Google Scholar 

  22. Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, Song Y, Xu D, Guo Q, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11

    Article  CAS  Google Scholar 

  23. Zhang Y, Shu W, Liu F, Du Y, Liu S, Ji Y, Yokoi T, Tatsumi T, Xiao FS (2009) Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today 4(2):135–142

    Article  CAS  Google Scholar 

  24. Deng J, Wang T, Guo J, Liu P (2017) Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis. Prog Nat Sci: Mater Int 27(2):257–260

    Article  CAS  Google Scholar 

  25. Liu H, Song H, Chen X, Zhang S, Zhou J, Ma Z (2015) Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. J Power Sources 85:303–309

    Article  Google Scholar 

  26. Zou G, Hou H, Foster CW, Banks CE, Guo T, Jiang Y, Zhang Y, Ji X (2018) Advanced hierarchical vesicular carbon co-doped with s, p, n for high-rate sodium storage. Adv Sci 5:1800080

    Article  Google Scholar 

  27. Zhao Y, Wan J, Yao H, Zhang L, Lin K (2018) Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat Chem 10:924–931

    Article  CAS  Google Scholar 

  28. Li XJ, Xing W, Zhou J (2014) Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area. Chem-Eur J 20(41):13314–13320

    Article  CAS  Google Scholar 

  29. Li S, Chang Y, Yang J, Zhao C, Qiu J (2017) Ultrathin nitrogen-enriched hybrid carbon nanosheets for supercapacitors with ultrahigh rate performance and high energy density. Chem Electro Chem 4(2):369–375

    CAS  Google Scholar 

  30. Fan X, Yu C, Yang J, Ling Z, Hu C, Zhang M, Qiu J (2015) A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv Energy Mater 5(7):1401761

    Article  Google Scholar 

  31. Ren J, Li L, Chen C, Chen X, Cai Z, Qiu L, Wang Y, Zhu X, Peng H (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 25(8):1155–1159

    Article  CAS  Google Scholar 

  32. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580

    Article  CAS  Google Scholar 

  33. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505

    Article  CAS  Google Scholar 

  34. Bichat MP, Raymundo-Pinero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48(15):4351–4361

    Article  CAS  Google Scholar 

  35. Hsu YK, Chen YC, Lin YG, Chen LC, Chen KH (2012) High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution. J Mater Chem 22(8):3383–3387

    Article  CAS  Google Scholar 

  36. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  CAS  Google Scholar 

  37. Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK, Grappe HA, Meyer HM, Dai S, Paranthaman MP (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30(3):900–910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the fund of National Nature Science Foundation of China (Nos. 21667017 and 21666018) and Gansu Province University Fundamental Research Funds (No. 056002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqiang Zhang or Heming Luo.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1006 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, P., Chen, X. et al. Study of the preparation and electrochemical performance of porous carbon derived from hypercrosslinked polymers. Carbon Lett. 32, 849–862 (2022). https://doi.org/10.1007/s42823-022-00322-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00322-0

Keywords

Navigation