Skip to main content

Advertisement

Log in

A simple electrospinning strategy to achieve the uniform distribution of ultra-fine CoP nanocrystals on carbon nanofibers for efficient lithium storage

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Transition-metal phosphides (TMPs), a promising anode material for lithium-ion batteries (LIBs), are limited in application because of its serious volume effect in the cycle. In this work, a simple electrospinning strategy was proposed to restrict the grain size of CoP nanocrystals by nano-confined effect of carbon nanofibers with ligands. The addition of ligands not only could realize the uniform dispersion of CoP nanocrystals, but also strengthen the bond between the metals and carbon nanofibers. As a result, the CoP/CNF composite exhibits excellent lithium storage performance, and its reversible specific capacity could reach 1016.4 mAh g−1 after 200 cycles at a current density of 200 mA g−1. The research is anticipated to provide a new idea for the preparation of anode materials for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liang Y, Zhao C-Z, Yuan H, Chen Y, Zhang W, Huang J-Q, Yu D, Liu Y, Titirici M-M, Chueh Y-L, Yu H, Zhang Q (2019) A review of rechargeable batteries for portable electronic devices. InfoMat 1(1):6–32

    Article  CAS  Google Scholar 

  2. Liang LP, Li JC, Zhu MY, Li YL, Li WX (2019) Cobalt chalcogenides/cobalt phosphides/cobaltates with hierarchical nanostructures for anode materials of lithium-ion batteries: improving the lithiation environment. Small 17(9):1903418

    Article  Google Scholar 

  3. Shaker M, Ghazvini AAS, Qureshi FR, Riahifar R (2021) A criterion combined of bulk and surface lithium storage to predict the capacity of porous carbon lithium-ion battery anodes: lithium-ion battery anode capacity prediction. Carbon Lett 31(4):1–6

    Google Scholar 

  4. Ramesh M, Rajeshkumar L, Bhoopathi R (2021) Carbon substrates: a review on fabrication, properties and applications. Carbon Lett 31:557–580

    Article  Google Scholar 

  5. Yue LC, Liang J, Wu ZG, Zhong BH, Luo YL, Liu Q, Li TS, Kong QQ, Liu Y, Asiri AM, Guo XD, Sun XP (2021) Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. J Mater Chem A 9(20):11879–11907

    Article  CAS  Google Scholar 

  6. Wang X, Kim H-M, Xiao Y, Sun Y-K (2016) Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A 4(39):14915–14931

    Article  CAS  Google Scholar 

  7. Elshahawy AM, Guan C, Li X, Zhang H, Hu YY, Wu HJ, Pennycook SJ, Wang J (2017) Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 39:162–171

    Article  CAS  Google Scholar 

  8. Tang C, Zhang R, Lu WB, He LB, Jiang X, Asiri AM, Sun XP (2017) Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv Mater 29(2):1602441

    Article  Google Scholar 

  9. Tian JQ, Qian L, Asiri AM, Sun XP (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136(21):7587–7590

    Article  CAS  Google Scholar 

  10. Li JY, Yan M, Zhou XM, Huang Z-Q, Xia ZM, Chang C-R, Ma YY, Qu YQ (2016) Mechanistic insights on ternary Ni2-XCoXP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv Funct Mater 26(37):6785–6796

    Article  CAS  Google Scholar 

  11. Chen KY, Huang XB, Wan CY, Liu H (2015) Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes. Chem Commun 51(37):7891–7894

    Article  CAS  Google Scholar 

  12. Yang D, Lu ZY, Rui XH, Huang X, Li H, Zhu JX, Zhang WY, Lam YM, Hng HH, Zhang H, Yan QY (2014) Synthesis of two-dimensional transition-metal phosphates with highly ordered mesoporous structures for lithium-ion battery applications. Angew Chem 126(35):9506–9509

    Article  Google Scholar 

  13. Zhang ZY, Liu SS, Xiao J, Wang S (2016) Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. J Mater Chem A 4(24):9691–9699

    Article  CAS  Google Scholar 

  14. Li ZQ, Zhang LY, Ge XL, Li CX, Dong SH, Wang CX, Yin LW (2017) Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 32:494–502

    Article  CAS  Google Scholar 

  15. Wang JM, Liu Z, Zheng YW, Cui L, Yang WR, Liu JQ (2017) Recent advances in cobalt phosphide based materials for energy-related applications. J Mater Chem A 5(44):22913–22932

    Article  CAS  Google Scholar 

  16. Wang Y (2017) Practical challenges in employing graphene for lithium ion batteries and beyond. Small 1(6):1700099

    Article  Google Scholar 

  17. Guo KK, Xi BJ, Wei RC, Li HB, Feng JK, Xiong SL (2020) Hierarchical microcables constructed by CoP@C⊂Carbon framework intertwined with carbon nanotubes for efficient lithium storage. Adv Energy Mater 10(12):1902913

    Article  CAS  Google Scholar 

  18. Lu AL, Zhang XQ, Chen YZ, Xie QS, Qi QQ, Ma YT, Peng D-L (2015) Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J Power Sources 295:329–335

    Article  CAS  Google Scholar 

  19. Jiao GH, Gu Y, Wang J, Wu DJ, Tao S, Chu SQ, Liu BQ, Chu WS (2019) Porous CoP/C@MCNTs hybrid composite derived from metal–organic frameworks for high-performance lithium-ion batteries. J Mater Sci 54(4):3273–3283

    Article  CAS  Google Scholar 

  20. Wang H-G, Yuan S, Ma D-L, Zhang X-B, Yan J-M (2015) Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8(6):1660–1681

    Article  CAS  Google Scholar 

  21. Xue JJ, Wu T, Dai YQ, Xia YN (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119(8):5298–5415

    Article  CAS  Google Scholar 

  22. Peng JJ, Tao J, Liu ZJ, Yang YH, Yu L, Zhang M, Wang F, Ding Y (2021) Ultra-stable and high capacity flexible lithium-ion batteries based on bimetallic MOFs derivatives aiming for wearable electronic devices. Chem Eng J 417(35):129200

    Article  CAS  Google Scholar 

  23. Lee SE, Kim JS, Lee Y-S, Bai BC, Im JS (2021) Effect of crystallinity and particle size on coke-based anode for lithium ion batteries. Carbon Lett 31(5):911–920

    Article  Google Scholar 

  24. Tu CB, Peng AP, Zhang Z, Qi XT, Zhang DK, Wang MJ, Huang YN, Yang ZY (2021) Surface-seeding secondary growth for CoO@Co9S8 P-N heterojunction hollow nanocube encapsulated into graphene as superior anode toward lithium ion storage. Chem Eng J 425:130648

    Article  CAS  Google Scholar 

  25. Xiao M-J, Ma B, Zhang Z-Q, Xiao Q, Li X-Y, Zhang Z-T, Wang Q, Peng Y, Zhang H-L (2021) Carbon nano-onion encapsulated cobalt nanoparticles for oxygen reduction and lithium-ion batteries. J Mater Chem A 9(11):7227–7237

    Article  CAS  Google Scholar 

  26. Kumar MIS, Kirupavathy SS, Shalini S (2021) Exploration on reduced graphene oxide/strontium pyro niobate electrode material for electrochemical energy storage applications. Carbon Lett 31:619–633

    Article  Google Scholar 

  27. Kou XL, Xin X, Zhang Y, Meng L-Y (2021) Facile synthesis of nitrogen-doped carbon dots (N-CDs) and N-CDs/NiO composite as an efficient electrocatalyst for oxygen evolution reaction. Carbon Lett 31:695–706

    Article  Google Scholar 

  28. Ouyang J, Gong JL, Li LQ, Wang W, Wang QH, Chen JY, Chen L, Hou ZH (2022) Application of Co/Co9S8@ N, S doped porous carbon composites prepared by ball milling for zinc-air battery. J Electroanal Chem 920:116628

    Article  CAS  Google Scholar 

  29. Zhang XD, Zhao YR, Zhang CY, Wu CX, Li XP, Jin MJ, Lan W, Pan XJ, Zhou JY, Xie EQ (2021) Cobalt sulfide embedded carbon nanofibers as a self-supporting template to improve lithium ion battery performances. Electrochim Acta 366:137351

    Article  CAS  Google Scholar 

  30. Zhu PP, Zhang Z, Zhao PF, Zhang BW, Cao X, Yu J, Cai JX, Huang YZ, Yang ZY (2018) Rational design of intertwined carbon nanotubes threaded porous CoP@carbon nanocubes as anode with superior lithium storage. Carbon 142:269–277

    Article  Google Scholar 

  31. Li T, Li H, Qin AQ, Wu H, Zhang DH, Xu F (2020) Assembled NiS nanoneedles anode for Na-ion batteries: enhanced the performance by organic hyperbranched polymer electrode additives. J Power Sources 451:227796

    Article  CAS  Google Scholar 

  32. Wang W, Li LQ, Ouyang J, Gong JL, Tian J, Chen L, Huang JL, He BH, Hou ZH (2022) CoS2/N, S co-doped mesoporous carbon with 3D micro-nano crosslinked structure as efficient bifunctional oxygen electrocatalysts for zinc-air batteries. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2022.06.020

    Article  Google Scholar 

  33. Yang M, Chen YY, Wang HT, Zou YL, Wu PX, Zou J, Jiang JZ (2022) Solvothermal preparation of CeO2 nanoparticles-graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32(5):1277–1285

    Article  Google Scholar 

  34. Lei CJ, Wang FF, Yang J, Gao XF, Yu XY, Yang B, Chen GH, Yuan C, Lei LC, Hou Y (2018) Embedding Co2P nanoparticles in N-doped carbon nanotubes grown on porous carbon polyhedra for high-performance lithium-ion batteries. Ind Eng Chem Res 57(39):13019–13025

    Article  CAS  Google Scholar 

  35. Zhu KJ, Liu J, Li S, Liu LL, Yang LY, Wang H, Xie T (2017) Ultrafine Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon matrix as a superior anode material for lithium ion batteries. Adv Mater Interfaces 4:1700377

    Article  Google Scholar 

  36. Xia GL, Su JW, Li MS, Jiang P, Yang Y, Chen QW et al (2017) A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J Mater Chem A 5(21):10321–10327

    Article  CAS  Google Scholar 

  37. Wang L, Wang ZH, Xie LL, Zhu LM, Cao XY (2019) ZIF-67 derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 11:16619–16628

    Article  CAS  Google Scholar 

  38. Sun M, Zhang H, Wang Y-F, Liu W-L, Ren M-M, Kong F-G, Wang S-J (2019) Co/CoO@N-C nanocomposites as high-performance anodes for lithium-ion batteries. J Alloys Compd 771:290–296

    Article  CAS  Google Scholar 

  39. Gao H, Yang FH, Zheng Y, Zhang Q, Hao JN, Zhang SL, Zheng H, Chen J, Liu HK (2019) Three-dimensional porous cobalt phosphide nanocubes encapsulated in graphene aerogel as an advanced anode with high columbic efficiency for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 11(5):5373–5379

    Article  CAS  Google Scholar 

  40. Zhu JL, Wu QL, Key JL, Wu MM, Shen PK (2018) Self-assembled superstructure of carbon-wrapped single-crystalline Cu3P porous nanosheets: one-step synthesis and enhanced Li-ion battery anode performance. Energy Storage Mater 15:75–81

    Article  Google Scholar 

  41. Oh YJ, Shin MC, Kim JH, Yang SJ (2021) Facile preparation of ZnO quantum dots@porous carbon composites through direct carbonization of metal–organic complex for high-performance lithium ion batteries. Carbon Lett 31:323–329

    Article  Google Scholar 

  42. Kwon H-T, Kim J-H, Jeon K-J, Park C-M (2014) CoxP compounds: electrochemical conversion/partial recombination reaction and partially disproportionated nanocomposite for Li-ion battery anodes. RSC Adv 4(81):43227–43234

    Article  CAS  Google Scholar 

  43. Zhou D, Yi JG, Zhao XD, Yang JQ, Lu HR, Fan L-Z (2020) Confining ultrasmall CoP nanoparticles into nitrogen-doped porous carbon via synchronous pyrolysis and phosphorization for enhanced potassium-ion storage. Chem Eng J 413:127508

    Article  Google Scholar 

  44. Li Z, Cao YJ, Li GY, Chen L, Xu WY, Zhou MJ, He BH, Wang W, Hou ZH (2021) High rate capability of S-doped ordered mesoporous carbon materials with directional arrangement of carbon layers and large d-spacing for sodium-ion battery. Electrochim Acta 366:137644

    Article  Google Scholar 

  45. Lu HY, Qian RF, Yao TH, Li C, Li L, Wang HK (2021) Synthesis of spherical carbon-coated CoP nanoparticles for high performance lithium-ion batteries. Energy Technol 9(10):2100605

    Article  CAS  Google Scholar 

  46. Jiang JT, Zhu K, Fang YZ, Wang HZ, Ye K, Yan J, Wang GL, Cheng K, Zhou LM, Cao DX (2018) Coralloidal carbon-encapsulated CoP nanoparticles generated on biomass carbon as a high-rate and stable electrode material for lithium-ion batteries. J Colloid Interface Sci 530:579–585

    Article  CAS  Google Scholar 

  47. Wang J, Zhao XM (2021) Metal-organic-framework-derived CoP nanoparticles-embedded into carbon nanocages for high-performance lithium-ion battery. Mater Lett 290:129454

    Article  CAS  Google Scholar 

  48. Jiao GH, Gu Y, Wang J, Wu DJ, Tao S, Chu SQ, Liu YS, Qian B, Chu WS (2019) Porous CoP/C@MCNTs hybrid composite derived from metal–organic frameworks for high-performance lithium-ion batteries. J Mater Sci 54:3273–3283

    Article  CAS  Google Scholar 

  49. Lee G-H, Kim YS, Sung M-C, Kim D-W (2021) Ultrafine CoP nanoparticles encapsulated in N/P dual-doped carbon cubes derived from 7,7,8,8-tetracyanoquinodimethane for lithium-ion batteries. Appl Surf Sci 555:149716

    Article  CAS  Google Scholar 

  50. Li HH, Zhu YQ, Zhao KJ, Fu Q, Wang K, Wang YP, Wang N, Lv XX, Jiang HB, Chen L (2020) Surface modification of coordination polymers to enable the construction of CoP/N, P-codoped carbon nanowires towards high-performance lithium storage. J Colloid Interf Sci 565:503–512

    Article  CAS  Google Scholar 

  51. Yang QR, Tai ZX, Xia QB, Lai WH, Wang WL, Zhang BW, Yan ZC, Peng J, Yang HL, Liu HW, Gu QF, Chou SL, Liu HK (2021) Copper phosphide as a promising anode material for potassium-ion batteries. J Mater Chem A 9(11):8378–8385

    Article  CAS  Google Scholar 

  52. Guan MY, Li Z, Ouyang J, Li GY, Chen L, Zhou MJ, He BH, Xu WY, Wang W, Hou ZH (2022) A facile electrospinning strategy for fibrous NixSy quantum dots @ N doped carbon nanofibers as high-performance Li-ion battery anodes. Mater Today Commun 31:103652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 52104301, 52171207, 51972109, 52072120), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 21B0591), the Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ40162), the Guangxi Key Laboratory of Low Carbon Energy Material (No. 2020GXKLLCEM03), the Natural Science Foundation of Hubei Province (Grant No. 2021CFB133), the Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education (No. 2021JYBKF05) and the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education (Grant No. LCX2021003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang, Haitao Wang or Wenyuan Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1816 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, W., Huang, J. et al. A simple electrospinning strategy to achieve the uniform distribution of ultra-fine CoP nanocrystals on carbon nanofibers for efficient lithium storage. Carbon Lett. 33, 203–213 (2023). https://doi.org/10.1007/s42823-022-00417-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00417-8

Keywords

Navigation